ﻻ يوجد ملخص باللغة العربية
E-commerce stores collect customer feedback to let sellers learn about customer concerns and enhance customer order experience. Because customer feedback often contains redundant information, a concise summary of the feedback can be generated to help sellers better understand the issues causing customer dissatisfaction. Previous state-of-the-art abstractive text summarization models make two major types of factual errors when producing summaries from customer feedback, which are wrong entity detection (WED) and incorrect product-defect description (IPD). In this work, we introduce a set of methods to enhance the factual consistency of abstractive summarization on customer feedback. We augment the training data with artificially corrupted summaries, and use them as counterparts of the target summaries. We add a contrastive loss term into the training objective so that the model learns to avoid certain factual errors. Evaluation results show that a large portion of WED and IPD errors are alleviated for BART and T5. Furthermore, our approaches do not depend on the structure of the summarization model and thus are generalizable to any abstractive summarization systems.
A commonly observed problem with the state-of-the art abstractive summarization models is that the generated summaries can be factually inconsistent with the input documents. The fact that automatic summarization may produce plausible-sounding yet in
Automatic abstractive summaries are found to often distort or fabricate facts in the article. This inconsistency between summary and original text has seriously impacted its applicability. We propose a fact-aware summarization model FASum to extract
A key challenge for abstractive summarization is ensuring factual consistency of the generated summary with respect to the original document. For example, state-of-the-art models trained on existing datasets exhibit entity hallucination, generating n
Summaries generated by abstractive summarization are supposed to only contain statements entailed by the source documents. However, state-of-the-art abstractive methods are still prone to hallucinate content inconsistent with the source documents. In
Neural abstractive summarization systems have achieved promising progress, thanks to the availability of large-scale datasets and models pre-trained with self-supervised methods. However, ensuring the factual consistency of the generated summaries fo