ﻻ يوجد ملخص باللغة العربية
The Standard Model (SM) predicts that $Delta A_{rm CP}$, the difference between the direct CP asymmetries for the modes $B^+to pi^0 K^+$ and $B^0to pi^- K^+$ that are related by weak isospin, should be close to zero. There has been a recent claim by the LHCb Collaboration that the measured value of $Delta A_{rm CP}$ shows an uncomfortable tension with the SM prediction, almost at the $8sigma$ level. Motivated by this claim, we critically re-examine the data on all the $Bto pi K$ modes, including the CP asymmetries and CP-averaged branching fractions. From a combined Bayesian analysis with the topological amplitudes and their phases as the free parameters, we find that the best-fit region has a large overlap with the parameter space favoured in the SM, albeit with some enhancement for the electroweak penguin and the colour-suppressed tree amplitudes, consistent with the findings of earlier studies. This `SM-like region perfectly explains $Delta A_{rm CP}$ and hence we conclude that there is not yet enough motivation to go beyond the SM.
We analyze the decays $B^0 to a^pm_0 pi^mp$ and $B^{-,0} to f_0 K^{-,0}$ and show that within the factorization approximation a phenomenological consistent picture can be obtained. We show that in this approach the $O_6$ operator provides the dominan
The meson decays $Bto Dtau u$ and $Bto D^* tau u$ are sensitive probes of the $bto ctau u$ transition. In this work we present a complete framework to obtain the maximum information on the physics of $Bto D^{(*)}tau u$ with polarized $tau$ leptons a
We present a model for the decay $D^+to K^-pi^+pi^+$. The weak interaction part of this reaction is described using the effective weak Hamiltonian in the factorisation approach. Hadronic final state interactions are taken into account through the $Kp
Recent experimental data for the differential decay distribution of the decay $tau^-to u_tau K_Spi^-$ by the Belle collaboration are described by a theoretical model which is composed of the contributing vector and scalar form factors $F_+^{Kpi}(s)$
This article analyses the available inputs in $btopilnu$ and $btorholnu$ decays which include the measured values of differential rate in different $q^2$-bins (lepton invariant mass spectrum), lattice, and the newly available inputs on the relevant f