ترغب بنشر مسار تعليمي؟ اضغط هنا

A closer look at observables from exclusive semileptonic $Bto(pi,rho)ell u_{ell}$ decays

101   0   0.0 ( 0 )
 نشر من قبل Aritra Biswas
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This article analyses the available inputs in $btopilnu$ and $btorholnu$ decays which include the measured values of differential rate in different $q^2$-bins (lepton invariant mass spectrum), lattice, and the newly available inputs on the relevant form-factors from the light-cone sum rules (LCSR) approach. We define different fit scenarios, and in each of these scenarios, we predict a few observables in the standard model (SM). For example, $R(M) =frac{mathcal{B}(B to Mell_i u_{ell_i})}{mathcal{B}(Bto Mell_j u_{ell_j})} $, $R^{ell_i}_{ell_j}(M) =frac{mathcal{B}(Bto ell_i u_{ell_i})}{mathcal{B}(B to Mell_j u_{ell_j})}$ with M = $pi$ or $rho$ and $ell_{i,j} = e, mu$ or $tau$. We also discuss the new physics (NP) sensitivities of all these observables and obtain bounds on a few NP Wilson coefficients in $bto u tau u_{tau}$ decays using the available data. We have noted that the data at present allows sizeable NP contributions in this mode. Also, we have predicted a few angular observables relevant to these decay modes.

قيم البحث

اقرأ أيضاً

We reassess the $Btopiell u_{ell}$ differential branching ratio distribution experimental data released by the BaBar and Belle Collaborations supplemented with all lattice calculations of the $Btopi$ form factor shape available up to date obtained by the HPQCD, FNAL/MILC and RBC/UKQCD Collaborations. Our study is based on the method of Pad{e} approximants, and includes a detailed scrutiny of each individual data set that allow us to obtain $|V_{ub}|=3.53(8)_{rm{stat}}(6)_{rm{syst}}times10^{-3}$. The semileptonic $B^{+}toeta^{(prime)}ell^{+} u_{ell}$ decays are also addressed and the $eta$-$eta^{prime}$ mixing discussed.
We discuss the general properties of the amplitude of the $Bto l^+l^-l u$ decays and calculate the related kinematical distributions $d^2Gamma/dq^2dq^2$, $q$ the momentum of the $l^+l^-$ pair emitted from the electromagnetic vertex and $q$ the moment um of the $l u$ pair emitted from the weak vertex. We emphasize that electromagnetic gauge invariance imposes essential constraints on the $Bto gamma^*l u$ amplitude at small $q^2$ which in the end yield the behaviour of the differential branching fraction as $dGamma(Bto l^+l^-l u)/dq^2propto 1/q^2$ and a mild logarithmic dependence of $Gamma(Bto l^{+}l^{-}l u)$ on the lepton mass $m_l$. Consequently, (i) the main contribution to the decay rate $Gamma(Bto mu^+mu^-e u_e )$ comes from the region of light vector resonances $rho^0$ and $omega$, $q^2simeq M_rho^2, M_omega^2$ and (ii) the decay rate $Gamma(Bto e^{+}e^{-}mu u_mu)$ receives comparable contributions from the region of small $q^2$ and from the resonance region. As the result, the decay rate $Gamma(Bto e^+e^-mu u_mu)$ is only a factor $sim 2$ larger than $Gamma(Bto mu^+mu^-e u_e)$. We perform a detailed analysis of the uncertainties in the theoretical predictions for the decays $Bto l^+l^-l u$ in the Standard Model. We found that the theoretical expectations for such decays in the Standard Model are only marginally compatible with the recent upper limits of the LHCb collaboration.
After improving the knowledge about residua of the semileptonic form factor at its first two poles we show that $f_+^{Dpi}(q^2)$ is not saturated when compared with the experimental data. To fill the difference we approximate the rest of discontinuit y by an effective pole and show that the data can be described very well with the position of the effective pole larger than the next excitation in the spectrum of $D^ast$ state. The results of fits with experimental data also suggest the validity of superconvergence which in the pole models translates to a vanishing of the sum of residua of the form factor at all poles. A similar discussion in the case of $Bto pi ell u_ell$ leads to the possibility of extracting $vert V_{ub}vert$, the error of which appears to be dominated by $g_{B^ast Bpi}$, which can be nowadays computed on the lattice. In evaluating the residua of the form factors at their nearest pole we needed the vector meson decay constants $f_{D^ast}$ and $f_{B^ast}$, which we computed by using the numerical simulations of QCD on the lattice with $N_{rm f}=2$ dynamical quarks. We obtain, $f_{D^ast}/f_D=1.208(27)$ and $f_{B^ast}/f_B=1.051(17)$.
We study a set of exclusive decay modes of the Standard Model Higgs boson into a vector meson and a dilepton pair: $hto V ell^+ ell^-$, with $V=Upsilon, J/psi,phi$, and $ell=mu, tau$, determining the decay rates, the dilepton mass spectra and the $V$ longitudinal helicity fraction distributions. In the same framework, we analyze the exclusive modes into neutrino pairs $hto V u bar u$. We also discuss the implications of the recent CMS and ATLAS results for the lepton flavor-changing process $hto tau^+ mu^-$ on the $hto V tau^+ mu^-$ decay modes.
Based on the standard model (SM) of particle physics, we study the decays $Lambda_b to Lambda ell^+ ell^-$ in light of the available inputs from lattice and the data from LHCb. We fit the form-factors of this decay mode using the available theory and experimental inputs after defining different fit scenarios and checking their consistencies. The theory inputs include the relations between the form-factors in heavy quark effective theory (HQET) and soft collinear effective theory (SCET) at the endpoints of di-lepton invariant mass squared $q^2$. Utilizing the fit results, we have predicted a few observables related to this mode. We have also predicted the observable $R_{Lambda} = Br(Lambda_b to Lambda ell_i^+ell_i^- )/Br(Lambda_b to Lambda ell_j^+ell_j^-)$ where $ell_{i}$ and $ell_j$ are charged leptons of different generations ($i e j$). At the moment, we do not observe noticeable differences in the extracted values of the observables in fully data-driven and SM like fit scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا