ﻻ يوجد ملخص باللغة العربية
We analyze the decays $B^0 to a^pm_0 pi^mp$ and $B^{-,0} to f_0 K^{-,0}$ and show that within the factorization approximation a phenomenological consistent picture can be obtained. We show that in this approach the $O_6$ operator provides the dominant contributions to the suppressed channel $B^0 to a^+_0 pi^-$. When the $a_0$ is considered a two quark state, evaluation of the annihilation form factor using Perturbative $QCD$ implies that this contribution is not negligible, and furthermore it can interfere constructively or destructively with other penguin contributions. As a consequence of this ambiguity, the positive identification of $B^0 to pi^+ a_0^-$ can not distinguish between the two or four quark assignment of the $a_0$. According to our calculation, a best candidate to distinguish the nature of $a_0$ scalar is $Br(B^-to pi^0a_0^-)$ since the predictions for a four quark model is one order of magnitude smaller than for the two quark assignment. When the scalars are seen as two quarks states, simple theoretical assumptions based on SU(2) isospin symmetry provide relations between different B decays involving one scalar and one pseudoscalar meson.
The $a_0^0(980)-f_0(980)$ mixing is one of the most potential tools to learn about the nature of $a_0^0(980)$ and $f_0(980)$. Using the $f_0(980)$-$a_0^0(980)$ mixing intensity $xi_{af}$ measured recently at BESIII, we calculate the the branching rat
In this work, we have investigated the process $D_s^+to K^+ K^- pi^+$, taking into account the contributions from the $S$-wave pseudoscalar-pseudoscalar interaction within the chiral unitary approach, and also the intermediate $phi$ resonance. By ana
The Standard Model (SM) predicts that $Delta A_{rm CP}$, the difference between the direct CP asymmetries for the modes $B^+to pi^0 K^+$ and $B^0to pi^- K^+$ that are related by weak isospin, should be close to zero. There has been a recent claim by
We make a theoretical study of the $eta(1405) to pi^{0} f_0(980)$ and $eta(1405) to pi^{0} a_0(980)$ reactions with an aim to determine the isospin violation and the mixing of the $f_0(980)$ and $a_0(980)$ resonances. We make use of the chiral unitar
In the framework of the QCD factorization approach, we study the localized $CP$ violations of the $B^-rightarrow K^- pi^+pi^-$ decay with and without $a_0^0(980)-f_0(980)$ mixing mechanism, respectively, and find that the localized $CP$ violation can