ﻻ يوجد ملخص باللغة العربية
A profound quest of statistical mechanics is the origin of irreversibility - the arrow of time. New stimulants have been provided, thanks to unprecedented degree of control reached in experiments with isolated quantum systems and rapid theoretical developments of manybody localization in disordered interacting systems. The proposal of (many-body) eigenstate thermalization (ET) for these systems reinforces the common belief that either interaction or extrinsic randomness is required for thermalization. Here, we unveil a quantum thermalization mechanism challenging this belief. We find that, provided one-body quantum chaos is present, as a pure many-body state evolves the arrow of time can emerge, even without interaction or randomness. In times much larger than the Ehrenfest time that signals the breakdown of quantum-classical correspondence, quantum chaotic motion leads to thermal [Fermi-Dirac (FD) or Bose-Einstein (BE)] distributions and thermodynamics in individual eigenstates. Our findings lay dynamical foundation of statistical mechanics and thermodynamics of isolated quantum systems.
Chaotic quantum many-body dynamics typically lead to relaxation of local observables. In this process, known as quantum thermalization, a subregion reaches a thermal state due to quantum correlations with the remainder of the system, which acts as an
Quantum chaos in many-body systems provides a bridge between statistical and quantum physics with strong predictive power. This framework is valuable for analyzing properties of complex quantum systems such as energy spectra and the dynamics of therm
The spectral form factor (SFF), characterizing statistics of energy eigenvalues, is a key diagnostic of many-body quantum chaos. In addition, partial spectral form factors (pSFFs) can be defined which refer to subsystems of the many-body system. They
We develop a scheme for engineering genuine thermal states in analog quantum simulation platforms by coupling local degrees of freedom to driven, dissipative ancilla pseudospins. We demonstrate the scheme in a many-body quantum spin lattice simulatio
We show that the physical mechanism for the equilibration of closed quantum systems is dephasing, and identify the energy scales that determine the equilibration timescale of a given observable. For realistic physical systems (e.g those with local Ha