ترغب بنشر مسار تعليمي؟ اضغط هنا

Achieving Real-Time Object Detection on MobileDevices with Neural Pruning Search

145   0   0.0 ( 0 )
 نشر من قبل Pu Zhao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Object detection plays an important role in self-driving cars for security development. However, mobile systems on self-driving cars with limited computation resources lead to difficulties for object detection. To facilitate this, we propose a compiler-aware neural pruning search framework to achieve high-speed inference on autonomous vehicles for 2D and 3D object detection. The framework automatically searches the pruning scheme and rate for each layer to find a best-suited pruning for optimizing detection accuracy and speed performance under compiler optimization. Our experiments demonstrate that for the first time, the proposed method achieves (close-to) real-time, 55ms and 99ms inference times for YOLOv4 based 2D object detection and PointPillars based 3D detection, respectively, on an off-the-shelf mobile phone with minor (or no) accuracy loss.

قيم البحث

اقرأ أيضاً

156 - Pu Zhao , Wei Niu , Geng Yuan 2020
3D object detection is an important task, especially in the autonomous driving application domain. However, it is challenging to support the real-time performance with the limited computation and memory resources on edge-computing devices in self-dri ving cars. To achieve this, we propose a compiler-aware unified framework incorporating network enhancement and pruning search with the reinforcement learning techniques, to enable real-time inference of 3D object detection on the resource-limited edge-computing devices. Specifically, a generator Recurrent Neural Network (RNN) is employed to provide the unified scheme for both network enhancement and pruning search automatically, without human expertise and assistance. And the evaluated performance of the unified schemes can be fed back to train the generator RNN. The experimental results demonstrate that the proposed framework firstly achieves real-time 3D object detection on mobile devices (Samsung Galaxy S20 phone) with competitive detection performance.
291 - Zheng Zhan , Yifan Gong , Pu Zhao 2021
Though recent years have witnessed remarkable progress in single image super-resolution (SISR) tasks with the prosperous development of deep neural networks (DNNs), the deep learning methods are confronted with the computation and memory consumption issues in practice, especially for resource-limited platforms such as mobile devices. To overcome the challenge and facilitate the real-time deployment of SISR tasks on mobile, we combine neural architecture search with pruning search and propose an automatic search framework that derives sparse super-resolution (SR) models with high image quality while satisfying the real-time inference requirement. To decrease the search cost, we leverage the weight sharing strategy by introducing a supernet and decouple the search problem into three stages, including supernet construction, compiler-aware architecture and pruning search, and compiler-aware pruning ratio search. With the proposed framework, we are the first to achieve real-time SR inference (with only tens of milliseconds per frame) for implementing 720p resolution with competitive image quality (in terms of PSNR and SSIM) on mobile platforms (Samsung Galaxy S20).
The rapid development and wide utilization of object detection techniques have aroused attention on both accuracy and speed of object detectors. However, the current state-of-the-art object detection works are either accuracy-oriented using a large m odel but leading to high latency or speed-oriented using a lightweight model but sacrificing accuracy. In this work, we propose YOLObile framework, a real-time object detection on mobile devices via compression-compilation co-design. A novel block-punched pruning scheme is proposed for any kernel size. To improve computational efficiency on mobile devices, a GPU-CPU collaborative scheme is adopted along with advanced compiler-assisted optimizations. Experimental results indicate that our pruning scheme achieves 14$times$ compression rate of YOLOv4 with 49.0 mAP. Under our YOLObile framework, we achieve 17 FPS inference speed using GPU on Samsung Galaxy S20. By incorporating our proposed GPU-CPU collaborative scheme, the inference speed is increased to 19.1 FPS, and outperforms the original YOLOv4 by 5$times$ speedup. Source code is at: url{https://github.com/nightsnack/YOLObile}.
Object detection models shipped with camera-equipped edge devices cannot cover the objects of interest for every user. Therefore, the incremental learning capability is a critical feature for a robust and personalized object detection system that man y applications would rely on. In this paper, we present an efficient yet practical system, RILOD, to incrementally train an existing object detection model such that it can detect new object classes without losing its capability to detect old classes. The key component of RILOD is a novel incremental learning algorithm that trains end-to-end for one-stage deep object detection models only using training data of new object classes. Specifically to avoid catastrophic forgetting, the algorithm distills three types of knowledge from the old model to mimic the old models behavior on object classification, bounding box regression and feature extraction. In addition, since the training data for the new classes may not be available, a real-time dataset construction pipeline is designed to collect training images on-the-fly and automatically label the images with both category and bounding box annotations. We have implemented RILOD under both edge-cloud and edge-only setups. Experiment results show that the proposed system can learn to detect a new object class in just a few minutes, including both dataset construction and model training. In comparison, traditional fine-tuning based method may take a few hours for training, and in most cases would also need a tedious and costly manual dataset labeling step.
ARTOS is all about creating, tuning, and applying object detection models with just a few clicks. In particular, ARTOS facilitates learning of models for visual object detection by eliminating the burden of having to collect and annotate a large set of positive and negative samples manually and in addition it implements a fast learning technique to reduce the time needed for the learning step. A clean and friendly GUI guides the user through the process of model creation, adaptation of learned models to different domains using in-situ images, and object detection on both offline images and images from a video stream. A library written in C++ provides the main functionality of ARTOS with a C-style procedural interface, so that it can be easily integrated with any other project.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا