ﻻ يوجد ملخص باللغة العربية
ARTOS is all about creating, tuning, and applying object detection models with just a few clicks. In particular, ARTOS facilitates learning of models for visual object detection by eliminating the burden of having to collect and annotate a large set of positive and negative samples manually and in addition it implements a fast learning technique to reduce the time needed for the learning step. A clean and friendly GUI guides the user through the process of model creation, adaptation of learned models to different domains using in-situ images, and object detection on both offline images and images from a video stream. A library written in C++ provides the main functionality of ARTOS with a C-style procedural interface, so that it can be easily integrated with any other project.
An increasing need of running Convolutional Neural Network (CNN) models on mobile devices with limited computing power and memory resource encourages studies on efficient model design. A number of efficient architectures have been proposed in recent
Modern object detectors can rarely achieve short training time, fast inference speed, and high accuracy at the same time. To strike a balance among them, we propose the Training-Time-Friendly Network (TTFNet). In this work, we start with light-head,
Existing deep learning-based approaches for monocular 3D object detection in autonomous driving often model the object as a rotated 3D cuboid while the objects geometric shape has been ignored. In this work, we propose an approach for incorporating t
We propose a single-stage Human-Object Interaction (HOI) detection method that has outperformed all existing methods on HICO-DET dataset at 37 fps on a single Titan XP GPU. It is the first real-time HOI detection method. Conventional HOI detection me
3D object detection is an important task, especially in the autonomous driving application domain. However, it is challenging to support the real-time performance with the limited computation and memory resources on edge-computing devices in self-dri