ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Sequential Recommendation Consistency with Self-Supervised Imitation

97   0   0.0 ( 0 )
 نشر من قبل Xu Yuan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Most sequential recommendation models capture the features of consecutive items in a user-item interaction history. Though effective, their representation expressiveness is still hindered by the sparse learning signals. As a result, the sequential recommender is prone to make inconsistent predictions. In this paper, we propose a model, SSI, to improve sequential recommendation consistency with Self-Supervised Imitation. Precisely, we extract the consistency knowledge by utilizing three self-supervised pre-training tasks, where temporal consistency and persona consistency capture user-interaction dynamics in terms of the chronological order and persona sensitivities, respectively. Furthermore, to provide the model with a global perspective, global session consistency is introduced by maximizing the mutual information among global and local interaction sequences. Finally, to comprehensively take advantage of all three independent aspects of consistency-enhanced knowledge, we establish an integrated imitation learning framework. The consistency knowledge is effectively internalized and transferred to the student model by imitating the conventional prediction logit as well as the consistency-enhanced item representations. In addition, the flexible self-supervised imitation framework can also benefit other student recommenders. Experiments on four real-world datasets show that SSI effectively outperforms the state-of-the-art sequential recommendation methods.

قيم البحث

اقرأ أيضاً

132 - Zhiwei Liu , Yongjun Chen , Jia Li 2021
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data. At their core, such approaches model transition probabilities between items in a sequence, whether through Markov chains, recurrent networks, or more recently, Transformers. However both old and new issues remain, including data-sparsity and noisy data; such issues can impair the performance, especially in complex, parameter-hungry models. In this paper, we investigate the application of contrastive Self-Supervised Learning (SSL) to the sequential recommendation, as a way to alleviate some of these issues. Contrastive SSL constructs augmentations from unlabelled instances, where agreements among positive pairs are maximized. It is challenging to devise a contrastive SSL framework for a sequential recommendation, due to its discrete nature, correlations among items, and skewness of length distributions. To this end, we propose a novel framework, Contrastive Self-supervised Learning for sequential Recommendation (CoSeRec). We introduce two informative augmentation operators leveraging item correlations to create high-quality views for contrastive learning. Experimental results on three real-world datasets demonstrate the effectiveness of the proposed method on improving model performance and the robustness against sparse and noisy data. Our implementation is available online at url{https://github.com/YChen1993/CoSeRec}
Modern deep neural networks (DNNs) have greatly facilitated the development of sequential recommender systems by achieving state-of-the-art recommendation performance on various sequential recommendation tasks. Given a sequence of interacted items, e xisting DNN-based sequential recommenders commonly embed each item into a unique vector to support subsequent computations of the user interest. However, due to the potentially large number of items, the over-parameterised item embedding matrix of a sequential recommender has become a memory bottleneck for efficient deployment in resource-constrained environments, e.g., smartphones and other edge devices. Furthermore, we observe that the widely-used multi-head self-attention, though being effective in modelling sequential dependencies among items, heavily relies on redundant attention units to fully capture both global and local item-item transition patterns within a sequence. In this paper, we introduce a novel lightweight self-attentive network (LSAN) for sequential recommendation. To aggressively compress the original embedding matrix, LSAN leverages the notion of compositional embeddings, where each item embedding is composed by merging a group of selected base embedding vectors derived from substantially smaller embedding matrices. Meanwhile, to account for the intrinsic dynamics of each item, we further propose a temporal context-aware embedding composition scheme. Besides, we develop an innovative twin-attention network that alleviates the redundancy of the traditional multi-head self-attention while retaining full capacity for capturing long- and short-term (i.e., global and local) item dependencies. Comprehensive experiments demonstrate that LSAN significantly advances the accuracy and memory efficiency of existing sequential recommenders.
Recently, deep learning has made significant progress in the task of sequential recommendation. Existing neural sequential recommenders typically adopt a generative way trained with Maximum Likelihood Estimation (MLE). When context information (calle d factor) is involved, it is difficult to analyze when and how each individual factor would affect the final recommendation performance. For this purpose, we take a new perspective and introduce adversarial learning to sequential recommendation. In this paper, we present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation. Specifically, our proposed MFGAN has two kinds of modules: a Transformer-based generator taking user behavior sequences as input to recommend the possible next items, and multiple factor-specific discriminators to evaluate the generated sub-sequence from the perspectives of different factors. To learn the parameters, we adopt the classic policy gradient method, and utilize the reward signal of discriminators for guiding the learning of the generator. Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time. Extensive experiments conducted on three real-world datasets demonstrate the superiority of our proposed model over the state-of-the-art methods, in terms of effectiveness and interpretability.
Trip recommendation is a significant and engaging location-based service that can help new tourists make more customized travel plans. It often attempts to suggest a sequence of point of interests (POIs) for a user who requests a personalized travel demand. Conventional methods either leverage the heuristic algorithms (e.g., dynamic programming) or statistical analysis (e.g., Markov models) to search or rank a POI sequence. These procedures may fail to capture the diversity of human needs and transitional regularities. They even provide recommendations that deviate from tourists real travel intention when the trip data is sparse. Although recent deep recursive models (e.g., RNN) are capable of alleviating these concerns, existing solutions hardly recognize the practical reality, such as the diversity of tourist demands, uncertainties in the trip generation, and the complex visiting preference. Inspired by the advance in deep learning, we introduce a novel self-supervised representation learning framework for trip recommendation -- SelfTrip, aiming at tackling the aforementioned challenges. Specifically, we propose a two-step contrastive learning mechanism concerning the POI representation, as well as trip representation. Furthermore, we present four trip augmentation methods to capture the visiting uncertainties in trip planning. We evaluate our SelfTrip on four real-world datasets, and extensive results demonstrate the promising gain compared with several cutting-edge benchmarks, e.g., up to 4% and 12% on F1 and pair-F1, respectively.
Self-supervised learning (SSL), which can automatically generate ground-truth samples from raw data, holds vast potential to improve recommender systems. Most existing SSL-based methods perturb the raw data graph with uniform node/edge dropout to gen erate new data views and then conduct the self-discrimination based contrastive learning over different views to learn generalizable representations. Under this scheme, only a bijective mapping is built between nodes in two different views, which means that the self-supervision signals from other nodes are being neglected. Due to the widely observed homophily in recommender systems, we argue that the supervisory signals from other nodes are also highly likely to benefit the representation learning for recommendation. To capture these signals, a general socially-aware SSL framework that integrates tri-training is proposed in this paper. Technically, our framework first augments the user data views with the user social information. And then under the regime of tri-training for multi-view encoding, the framework builds three graph encoders (one for recommendation) upon the augmented views and iteratively improves each encoder with self-supervision signals from other users, generated by the other two encoders. Since the tri-training operates on the augmented views of the same data sources for self-supervision signals, we name it self-supervised tri-training. Extensive experiments on multiple real-world datasets consistently validate the effectiveness of the self-supervised tri-training framework for improving recommendation. The code is released at https://github.com/Coder-Yu/QRec.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا