ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovering Generalizable Skills via Automated Generation of Diverse Tasks

333   0   0.0 ( 0 )
 نشر من قبل Kuan Fang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The learning efficiency and generalization ability of an intelligent agent can be greatly improved by utilizing a useful set of skills. However, the design of robot skills can often be intractable in real-world applications due to the prohibitive amount of effort and expertise that it requires. In this work, we introduce Skill Learning In Diversified Environments (SLIDE), a method to discover generalizable skills via automated generation of a diverse set of tasks. As opposed to prior work on unsupervised discovery of skills which incentivizes the skills to produce different outcomes in the same environment, our method pairs each skill with a unique task produced by a trainable task generator. To encourage generalizable skills to emerge, our method trains each skill to specialize in the paired task and maximizes the diversity of the generated tasks. A task discriminator defined on the robot behaviors in the generated tasks is jointly trained to estimate the evidence lower bound of the diversity objective. The learned skills can then be composed in a hierarchical reinforcement learning algorithm to solve unseen target tasks. We demonstrate that the proposed method can effectively learn a variety of robot skills in two tabletop manipulation domains. Our results suggest that the learned skills can effectively improve the robots performance in various unseen target tasks compared to existing reinforcement learning and skill learning methods.

قيم البحث

اقرأ أيضاً

209 - Yuke Zhu , Ziyu Wang , Josh Merel 2018
We propose a model-free deep reinforcement learning method that leverages a small amount of demonstration data to assist a reinforcement learning agent. We apply this approach to robotic manipulation tasks and train end-to-end visuomotor policies tha t map directly from RGB camera inputs to joint velocities. We demonstrate that our approach can solve a wide variety of visuomotor tasks, for which engineering a scripted controller would be laborious. In experiments, our reinforcement and imitation agent achieves significantly better performances than agents trained with reinforcement learning or imitation learning alone. We also illustrate that these policies, trained with large visual and dynamics variations, can achieve preliminary successes in zero-shot sim2real transfer. A brief visual description of this work can be viewed in https://youtu.be/EDl8SQUNjj0
Learning from Demonstration (LfD) is a popular approach to endowing robots with skills without having to program them by hand. Typically, LfD relies on human demonstrations in clutter-free environments. This prevents the demonstrations from being aff ected by irrelevant objects, whose influence can obfuscate the true intention of the human or the constraints of the desired skill. However, it is unrealistic to assume that the robots environment can always be restructured to remove clutter when capturing human demonstrations. To contend with this problem, we develop an importance weighted batch and incremental skill learning approach, building on a recent inference-based technique for skill representation and reproduction. Our approach reduces unwanted environmental influences on the learned skill, while still capturing the salient human behavior. We provide both batch and increment
Reinforcement learning (RL) algorithms are typically limited to learning a single solution of a specified task, even though there often exists diverse solutions to a given task. Compared with learning a single solution, learning a set of diverse solu tions is beneficial because diverse solutions enable robust few-shot adaptation and allow the user to select a preferred solution. Although previous studies have showed that diverse behaviors can be modeled with a policy conditioned on latent variables, an approach for modeling an infinite set of diverse solutions with continuous latent variables has not been investigated. In this study, we propose an RL method that can learn infinitely many solutions by training a policy conditioned on a continuous or discrete low-dimensional latent variable. Through continuous control tasks, we demonstrate that our method can learn diverse solutions in a data-efficient manner and that the solutions can be used for few-shot adaptation to solve unseen tasks.
Personal robots assisting humans must perform complex manipulation tasks that are typically difficult to specify in traditional motion planning pipelines, where multiple objectives must be met and the high-level context be taken into consideration. L earning from demonstration (LfD) provides a promising way to learn these kind of complex manipulation skills even from non-technical users. However, it is challenging for existing LfD methods to efficiently learn skills that can generalize to task specifications that are not covered by demonstrations. In this paper, we introduce a state transition model (STM) that generates joint-space trajectories by imitating motions from expert behavior. Given a few demonstrations, we show in real robot experiments that the learned STM can quickly generalize to unseen tasks and synthesize motions having longer time horizons than the expert trajectories. Compared to conventional motion planners, our approach enables the robot to accomplish complex behaviors from high-level instructions without laborious hand-engineering of planning objectives, while being able to adapt to changing goals during the skill execution. In conjunction with a trajectory optimizer, our STM can construct a high-quality skeleton of a trajectory that can be further improved in smoothness and precision. In combination with a learned inverse dynamics model, we additionally present results where the STM is used as a high-level planner. A video of our experiments is available at https://youtu.be/85DX9Ojq-90
For robots to work alongside humans and perform in unstructured environments, they must learn new motion skills and adapt them to unseen situations on the fly. This demands learning models that capture relevant motion patterns, while offering enough flexibility to adapt the encoded skills to new requirements, such as dynamic obstacle avoidance. We introduce a Riemannian manifold perspective on this problem, and propose to learn a Riemannian manifold from human demonstrations on which geodesics are natural motion skills. We realize this with a variational autoencoder (VAE) over the space of position and orientations of the robot end-effector. Geodesic motion skills let a robot plan movements from and to arbitrary points on the data manifold. They also provide a straightforward method to avoid obstacles by redefining the ambient metric in an online fashion. Moreover, geodesics naturally exploit the manifold resulting from multiple--mode tasks to design motions that were not explicitly demonstrated previously. We test our learning framework using a 7-DoF robotic manipulator, where the robot satisfactorily learns and reproduces realistic skills featuring elaborated motion patterns, avoids previously unseen obstacles, and generates novel movements in multiple-mode settings.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا