ﻻ يوجد ملخص باللغة العربية
We study scalar, fermionic and gauge fields coupled nonminimally to gravity in the Einstein-Cartan formulation. We construct a wide class of models with nondynamical torsion whose gravitational spectra comprise only the massless graviton. Eliminating non-propagating degrees of freedom, we derive an equivalent theory in the metric formulation of gravity. It features contact interactions of a certain form between and among the matter and gauge currents. We also discuss briefly the inclusion of curvature-squared terms.
We study gravity coupled to scalar and fermion fields in the Einstein-Cartan framework. We discuss the most general form of the action that contains terms of mass dimension not bigger than four, leaving out only contributions quadratic in curvature.
We show how Einstein-Cartan gravity can accommodate both global scale and local scale (Weyl) invariance. To this end, we construct a wide class of models with nonpropagaing torsion and a nonminimally coupled scalar field. In phenomenological applicat
We consider Riemann-Cartan gravity with minimal Palatini action, which is classically equivalent to Einstein gravity. Following the ideas of L.Lipatov cite{LipGrav} we propose the effective action for this theory aimed at the description of the high-
We present a detailed analysis of the construction of $z=2$ and $z eq2$ scale invariant Hov{r}ava-Lifshitz gravity. The construction procedure is based on the realization of Hov{r}ava-Lifshitz gravity as the dynamical Newton-Cartan geometry as well a
We study inflation driven by the Higgs field in the Einstein-Cartan formulation of gravity. In this theory, the presence of the Holst and Nieh-Yan terms with the Higgs field non-minimally coupled to them leads to three additional coupling constants.