ﻻ يوجد ملخص باللغة العربية
We present a detailed analysis of the construction of $z=2$ and $z eq2$ scale invariant Hov{r}ava-Lifshitz gravity. The construction procedure is based on the realization of Hov{r}ava-Lifshitz gravity as the dynamical Newton-Cartan geometry as well as a non-relativistic tensor calculus in the presence of the scale symmetry. An important consequence of this method is that it provides us the necessary mechanism to distinguish the local scale invariance from the local Schrodinger invariance. Based on this result we discuss the $z=2$ scale invariant Hov{r}ava-Lifshitz gravity and the symmetry enhancement to the full Schrodinger group.
We investigate string-like solutions in four dimensions based on Hov{r}ava-Lifshitz gravity. For a restricted class of solutions where the Cotton tensor vanishes, we find that the string-like solutions in Einstein gravity including the BTZ black stri
We study holographic superconductors in a Hov{r}ava-Lifshitz black hole without the condition of the detailed balance. We show that it is easier for the scalar hair to form as the parameter of the detailed balance becomes larger, but harder when the
We investigate the Hamiltonian structure of linearized extended Hov{r}ava- Lifshitz gravity in a flat cosmological background following the Faddeev-Jackiws Hamiltonian reduction formalism. The Hamiltonian structure of extended Hov{r}ava-Lifshitz grav
We show how Einstein-Cartan gravity can accommodate both global scale and local scale (Weyl) invariance. To this end, we construct a wide class of models with nonpropagaing torsion and a nonminimally coupled scalar field. In phenomenological applicat
In this paper we study the corrections emergent from a Hov{r}ava-Lifshitz extension of the complex scalar sector to the Bose-Einstein condensation and to the thermodynamics parameters. We initially discussed some features of the model to only then co