ترغب بنشر مسار تعليمي؟ اضغط هنا

Graph Pattern Loss based Diversified Attention Network for Cross-Modal Retrieval

127   0   0.0 ( 0 )
 نشر من قبل Chen Xueying
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Cross-modal retrieval aims to enable flexible retrieval experience by combining multimedia data such as image, video, text, and audio. One core of unsupervised approaches is to dig the correlations among different object representations to complete satisfied retrieval performance without requiring expensive labels. In this paper, we propose a Graph Pattern Loss based Diversified Attention Network(GPLDAN) for unsupervised cross-modal retrieval to deeply analyze correlations among representations. First, we propose a diversified attention feature projector by considering the interaction between different representations to generate multiple representations of an instance. Then, we design a novel graph pattern loss to explore the correlations among different representations, in this graph all possible distances between different representations are considered. In addition, a modality classifier is added to explicitly declare the corresponding modalities of features before fusion and guide the network to enhance discrimination ability. We test GPLDAN on four public datasets. Compared with the state-of-the-art cross-modal retrieval methods, the experimental results demonstrate the performance and competitiveness of GPLDAN.



قيم البحث

اقرأ أيضاً

Cross-modal information retrieval aims to find heterogeneous data of various modalities from a given query of one modality. The main challenge is to map different modalities into a common semantic space, in which distance between concepts in differen t modalities can be well modeled. For cross-modal information retrieval between images and texts, existing work mostly uses off-the-shelf Convolutional Neural Network (CNN) for image feature extraction. For texts, word-level features such as bag-of-words or word2vec are employed to build deep learning models to represent texts. Besides word-level semantics, the semantic relations between words are also informative but less explored. In this paper, we model texts by graphs using similarity measure based on word2vec. A dual-path neural network model is proposed for couple feature learning in cross-modal information retrieval. One path utilizes Graph Convolutional Network (GCN) for text modeling based on graph representations. The other path uses a neural network with layers of nonlinearities for image modeling based on off-the-shelf features. The model is trained by a pairwise similarity loss function to maximize the similarity of relevant text-image pairs and minimize the similarity of irrelevant pairs. Experimental results show that the proposed model outperforms the state-of-the-art methods significantly, with 17% improvement on accuracy for the best case.
Recent advances in using retrieval components over external knowledge sources have shown impressive results for a variety of downstream tasks in natural language processing. Here, we explore the use of unstructured external knowledge sources of image s and their corresponding captions for improving visual question answering (VQA). First, we train a novel alignment model for embedding images and captions in the same space, which achieves substantial improvement in performance on image-caption retrieval w.r.t. similar methods. Second, we show that retrieval-augmented multi-modal transformers using the trained alignment model improve results on VQA over strong baselines. We further conduct extensive experiments to establish the promise of this approach, and examine novel applications for inference time such as hot-swapping indices.
Cross-modal retrieval methods build a common representation space for samples from multiple modalities, typically from the vision and the language domains. For images and their captions, the multiplicity of the correspondences makes the task particul arly challenging. Given an image (respectively a caption), there are multiple captions (respectively images) that equally make sense. In this paper, we argue that deterministic functions are not sufficiently powerful to capture such one-to-many correspondences. Instead, we propose to use Probabilistic Cross-Modal Embedding (PCME), where samples from the different modalities are represented as probabilistic distributions in the common embedding space. Since common benchmarks such as COCO suffer from non-exhaustive annotations for cross-modal matches, we propose to additionally evaluate retrieval on the CUB dataset, a smaller yet clean database where all possible image-caption pairs are annotated. We extensively ablate PCME and demonstrate that it not only improves the retrieval performance over its deterministic counterpart but also provides uncertainty estimates that render the embeddings more interpretable. Code is available at https://github.com/naver-ai/pcme
Enabling bi-directional retrieval of images and texts is important for understanding the correspondence between vision and language. Existing methods leverage the attention mechanism to explore such correspondence in a fine-grained manner. However, m ost of them consider all semantics equally and thus align them uniformly, regardless of their diverse complexities. In fact, semantics are diverse (i.e. involving different kinds of semantic concepts), and humans usually follow a latent structure to combine them into understandable languages. It may be difficult to optimally capture such sophisticated correspondences in existing methods. In this paper, to address such a deficiency, we propose an Iterative Matching with Recurrent Attention Memory (IMRAM) method, in which correspondences between images and texts are captured with multiple steps of alignments. Specifically, we introduce an iterative matching scheme to explore such fine-grained correspondence progressively. A memory distillation unit is used to refine alignment knowledge from early steps to later ones. Experiment results on three benchmark datasets, i.e. Flickr8K, Flickr30K, and MS COCO, show that our IMRAM achieves state-of-the-art performance, well demonstrating its effectiveness. Experiments on a practical business advertisement dataset, named Ads{}, further validates the applicability of our method in practical scenarios.
Cross-modal retrieval aims to learn discriminative and modal-invariant features for data from different modalities. Unlike the existing methods which usually learn from the features extracted by offline networks, in this paper, we propose an approach to jointly train the components of cross-modal retrieval framework with metadata, and enable the network to find optimal features. The proposed end-to-end framework is updated with three loss functions: 1) a novel cross-modal center loss to eliminate cross-modal discrepancy, 2) cross-entropy loss to maximize inter-class variations, and 3) mean-square-error loss to reduce modality variations. In particular, our proposed cross-modal center loss minimizes the distances of features from objects belonging to the same class across all modalities. Extensive experiments have been conducted on the retrieval tasks across multi-modalities, including 2D image, 3D point cloud, and mesh data. The proposed framework significantly outperforms the state-of-the-art methods on the ModelNet40 dataset.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا