ﻻ يوجد ملخص باللغة العربية
Structural features are important features in a geometrical graph. Although there are some correlation analysis of features based on covariance, there is no relevant research on structural feature correlation analysis with graph neural networks. In this paper, we introuduce graph feature to feature (Fea2Fea) prediction pipelines in a low dimensional space to explore some preliminary results on structural feature correlation, which is based on graph neural network. The results show that there exists high correlation between some of the structural features. An irredundant feature combination with initial node features, which is filtered by graph neural network has improved its classification accuracy in some graph-based tasks. We compare differences between concatenation methods on connecting embeddings between features and show that the simplest is the best. We generalize on the synthetic geometric graphs and certify the results on prediction difficulty between structural features.
Graph neural networks (GNNs) have been widely used in various graph-related problems such as node classification and graph classification, where the superior performance is mainly established when natural node features are available. However, it is n
Noise and inconsistency commonly exist in real-world information networks, due to inherent error-prone nature of human or user privacy concerns. To date, tremendous efforts have been made to advance feature learning from networks, including the most
Graph neural networks (GNNs) are shown to be successful in modeling applications with graph structures. However, training an accurate GNN model requires a large collection of labeled data and expressive features, which might be inaccessible for some
Motivated by graph theory, artificial neural networks (ANNs) are traditionally structured as layers of neurons (nodes), which learn useful information by the passage of data through interconnections (edges). In the machine learning realm, graph struc
Recent years have seen a rise in the development of representational learning methods for graph data. Most of these methods, however, focus on node-level representation learning at various scales (e.g., microscopic, mesoscopic, and macroscopic node e