ترغب بنشر مسار تعليمي؟ اضغط هنا

MatchVIE: Exploiting Match Relevancy between Entities for Visual Information Extraction

106   0   0.0 ( 0 )
 نشر من قبل Guozhi Tang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Visual Information Extraction (VIE) task aims to extract key information from multifarious document images (e.g., invoices and purchase receipts). Most previous methods treat the VIE task simply as a sequence labeling problem or classification problem, which requires models to carefully identify each kind of semantics by introducing multimodal features, such as font, color, layout. But simply introducing multimodal features couldnt work well when faced with numeric semantic categories or some ambiguous texts. To address this issue, in this paper we propose a novel key-value matching model based on a graph neural network for VIE (MatchVIE). Through key-value matching based on relevancy evaluation, the proposed MatchVIE can bypass the recognitions to various semantics, and simply focuses on the strong relevancy between entities. Besides, we introduce a simple but effective operation, Num2Vec, to tackle the instability of encoded values, which helps model converge more smoothly. Comprehensive experiments demonstrate that the proposed MatchVIE can significantly outperform previous methods. Notably, to the best of our knowledge, MatchVIE may be the first attempt to tackle the VIE task by modeling the relevancy between keys and values and it is a good complement to the existing methods.



قيم البحث

اقرأ أيضاً

Visual information extraction (VIE) has attracted considerable attention recently owing to its various advanced applications such as document understanding, automatic marking and intelligent education. Most existing works decoupled this problem into several independent sub-tasks of text spotting (text detection and recognition) and information extraction, which completely ignored the high correlation among them during optimization. In this paper, we propose a robust visual information extraction system (VIES) towards real-world scenarios, which is a unified end-to-end trainable framework for simultaneous text detection, recognition and information extraction by taking a single document image as input and outputting the structured information. Specifically, the information extraction branch collects abundant visual and semantic representations from text spotting for multimodal feature fusion and conversely, provides higher-level semantic clues to contribute to the optimization of text spotting. Moreover, regarding the shortage of public benchmarks, we construct a fully-annotated dataset called EPHOIE (https://github.com/HCIILAB/EPHOIE), which is the first Chinese benchmark for both text spotting and visual information extraction. EPHOIE consists of 1,494 images of examination paper head with complex layouts and background, including a total of 15,771 Chinese handwritten or printed text instances. Compared with the state-of-the-art methods, our VIES shows significant superior performance on the EPHOIE dataset and achieves a 9.01% F-score gain on the widely used SROIE dataset under the end-to-end scenario.
Visual information extraction (VIE) has attracted increasing attention in recent years. The existing methods usually first organized optical character recognition (OCR) results into plain texts and then utilized token-level entity annotations as supe rvision to train a sequence tagging model. However, it expends great annotation costs and may be exposed to label confusion, and the OCR errors will also significantly affect the final performance. In this paper, we propose a unified weakly-supervised learning framework called TCPN (Tag, Copy or Predict Network), which introduces 1) an efficient encoder to simultaneously model the semantic and layout information in 2D OCR results; 2) a weakly-supervised training strategy that utilizes only key information sequences as supervision; and 3) a flexible and switchable decoder which contains two inference modes: one (Copy or Predict Mode) is to output key information sequences of different categories by copying a token from the input or predicting one in each time step, and the other (Tag Mode) is to directly tag the input sequence in a single forward pass. Our method shows new state-of-the-art performance on several public benchmarks, which fully proves its effectiveness.
One of the main issues related to unsupervised machine learning is the cost of processing and extracting useful information from large datasets. In this work, we propose a classifier ensemble based on the transferable learning capabilities of the CLI P neural network architecture in multimodal environments (image and text) from social media. For this purpose, we used the InstaNY100K dataset and proposed a validation approach based on sampling techniques. Our experiments, based on image classification tasks according to the labels of the Places dataset, are performed by first considering only the visual part, and then adding the associated texts as support. The results obtained demonstrated that trained neural networks such as CLIP can be successfully applied to image classification with little fine-tuning, and considering the associated texts to the images can help to improve the accuracy depending on the goal. The results demonstrated what seems to be a promising research direction.
This paper presents a new framework for training image-based classifiers from a combination of texts and images with very few labels. We consider a classification framework with three modules: a backbone, a relational reasoning component, and a class ification component. While the backbone can be trained from unlabeled images by self-supervised learning, we can fine-tune the relational reasoning and the classification components from external sources of knowledge instead of annotated images. By proposing a transformer-based model that creates structured knowledge from textual input, we enable the utilization of the knowledge in texts. We show that, compared to the supervised baselines with 1% of the annotated images, we can achieve ~8x more accurate results in scene graph classification, ~3x in object classification, and ~1.5x in predicate classification.
Siamese tracking has achieved groundbreaking performance in recent years, where the essence is the efficient matching operator cross-correlation and its variants. Besides the remarkable success, it is important to note that the heuristic matching net work design relies heavily on expert experience. Moreover, we experimentally find that one sole matching operator is difficult to guarantee stable tracking in all challenging environments. Thus, in this work, we introduce six novel matching operators from the perspective of feature fusion instead of explicit similarity learning, namely Concatenation, Pointwise-Addition, Pairwise-Relation, FiLM, Simple-Transformer and Transductive-Guidance, to explore more feasibility on matching operator selection. The analyses reveal these operators selective adaptability on different environment degradation types, which inspires us to combine them to explore complementary features. To this end, we propose binary channel manipulation (BCM) to search for the optimal combination of these operators. BCM determines to retrain or discard one operator by learning its contribution to other tracking steps. By inserting the learned matching networks to a strong baseline tracker Ocean, our model achieves favorable gains by $67.2 rightarrow 71.4$, $52.6 rightarrow 58.3$, $70.3 rightarrow 76.0$ success on OTB100, LaSOT, and TrackingNet, respectively. Notably, Our tracker, dubbed AutoMatch, uses less than half of training data/time than the baseline tracker, and runs at 50 FPS using PyTorch. Code and model will be released at https://github.com/JudasDie/SOTS.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا