ﻻ يوجد ملخص باللغة العربية
Detecting the newly emerging malware variants in real time is crucial for mitigating cyber risks and proactively blocking intrusions. In this paper, we propose MG-DVD, a novel detection framework based on dynamic heterogeneous graph learning, to detect malware variants in real time. Particularly, MG-DVD first models the fine-grained execution event streams of malware variants into dynamic heterogeneous graphs and investigates real-world meta-graphs between malware objects, which can effectively characterize more discriminative malicious evolutionary patterns between malware and their variants. Then, MG-DVD presents two dynamic walk-based heterogeneous graph learning methods to learn more comprehensive representations of malware variants, which significantly reduces the cost of the entire graph retraining. As a result, MG-DVD is equipped with the ability to detect malware variants in real time, and it presents better interpretability by introducing meaningful meta-graphs. Comprehensive experiments on large-scale samples prove that our proposed MG-DVD outperforms state-of-the-art methods in detecting malware variants in terms of effectiveness and efficiency.
We present BPFroid -- a novel dynamic analysis framework for Android that uses the eBPF technology of the Linux kernel to continuously monitor events of user applications running on a real device. The monitored events are collected from different com
Android is undergoing unprecedented malicious threats daily, but the existing methods for malware detection often fail to cope with evolving camouflage in malware. To address this issue, we present HAWK, a new malware detection framework for evolutio
There is a lack of scientific testing of commercially available malware detectors, especially those that boast accurate classification of never-before-seen (i.e., zero-day) files using machine learning (ML). The result is that the efficacy and gaps a
Malware analysis has been extensively investigated as the number and types of malware has increased dramatically. However, most previous studies use end-to-end systems to detect whether a sample is malicious, or to identify its malware family. In thi
Modern commercial antivirus systems increasingly rely on machine learning to keep up with the rampant inflation of new malware. However, it is well-known that machine learning models are vulnerable to adversarial examples (AEs). Previous works have s