ترغب بنشر مسار تعليمي؟ اضغط هنا

MAB-Malware: A Reinforcement Learning Framework for Attacking Static Malware Classifiers

332   0   0.0 ( 0 )
 نشر من قبل Wei Song
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Modern commercial antivirus systems increasingly rely on machine learning to keep up with the rampant inflation of new malware. However, it is well-known that machine learning models are vulnerable to adversarial examples (AEs). Previous works have shown that ML malware classifiers are fragile to the white-box adversarial attacks. However, ML models used in commercial antivirus products are usually not available to attackers and only return hard classification labels. Therefore, it is more practical to evaluate the robustness of ML models and real-world AVs in a pure black-box manner. We propose a black-box Reinforcement Learning (RL) based framework to generate AEs for PE malware classifiers and AV engines. It regards the adversarial attack problem as a multi-armed bandit problem, which finds an optimal balance between exploiting the successful patterns and exploring more varieties. Compared to other frameworks, our improvements lie in three points. 1) Limiting the exploration space by modeling the generation process as a stateless process to avoid combination explosions. 2) Due to the critical role of payload in AE generation, we design to reuse the successful payload in modeling. 3) Minimizing the changes on AE samples to correctly assign the rewards in RL learning. It also helps identify the root cause of evasions. As a result, our framework has much higher black-box evasion rates than other off-the-shelf frameworks. Results show it has over 74%--97% evasion rate for two state-of-the-art ML detectors and over 32%--48% evasion rate for commercial AVs in a pure black-box setting. We also demonstrate that the transferability of adversarial attacks among ML-based classifiers is higher than the attack transferability between purely ML-based and commercial AVs.

قيم البحث

اقرأ أيضاً

Machine learning is a popular approach to signatureless malware detection because it can generalize to never-before-seen malware families and polymorphic strains. This has resulted in its practical use for either primary detection engines or for supp lementary heuristic detection by anti-malware vendors. Recent work in adversarial machine learning has shown that deep learning models are susceptible to gradient-based attacks, whereas non-differentiable models that report a score can be attacked by genetic algorithms that aim to systematically reduce the score. We propose a more general framework based on reinforcement learning (RL) for attacking static portable executable (PE) anti-malware engines. The general framework does not require a differentiable model nor does it require the engine to produce a score. Instead, an RL agent is equipped with a set of functionality-preserving operations that it may perform on the PE file. Through a series of games played against the anti-malware engine, it learns which sequences of operations are likely to result in evading the detector for any given malware sample. This enables completely black-box attacks against static PE anti-malware, and produces functional evasive malware samples as a direct result. We show in experiments that our method can attack a gradient-boosted machine learning model with evasion rates that are substantial and appear to be strongly dependent on the dataset. We demonstrate that attacks against this model appear to also evade components of publicly hosted antivirus engines. Adversarial training results are also presented: by retraining the model on evasive ransomware samples, a subsequent attack is 33% less effective. However, there are overfitting dangers when adversarial training, which we note. We release code to allow researchers to reproduce and improve this approach.
Although state-of-the-art PDF malware classifiers can be trained with almost perfect test accuracy (99%) and extremely low false positive rate (under 0.1%), it has been shown that even a simple adversary can evade them. A practically useful malware c lassifier must be robust against evasion attacks. However, achieving such robustness is an extremely challenging task. In this paper, we take the first steps towards training robust PDF malware classifiers with verifiable robustness properties. For instance, a robustness property can enforce that no matter how many pages from benign documents are inserted into a PDF malware, the classifier must still classify it as malicious. We demonstrate how the worst-case behavior of a malware classifier with respect to specific robustness properties can be formally verified. Furthermore, we find that training classifiers that satisfy formally verified robustness properties can increase the evasion cost of unbounded (i.e., not bounded by the robustness properties) attackers by eliminating simple evasion attacks. Specifically, we propose a new distance metric that operates on the PDF tree structure and specify two classes of robustness properties including subtree insertions and deletions. We utilize state-of-the-art verifiably robust training method to build robust PDF malware classifiers. Our results show that, we can achieve 92.27% average verified robust accuracy over three properties, while maintaining 99.74% accuracy and 0.56% false positive rate. With simple robustness properties, our robust model maintains 7% higher robust accuracy than all the baseline models against unrestricted whitebox attacks. Moreover, the state-of-the-art and new adaptive evolutionary attackers need up to 10 times larger $L_0$ feature distance and 21 times more PDF basic mutations (e.g., inserting and deleting objects) to evade our robust model than the baselines.
Malware is a piece of software that was written with the intent of doing harm to data, devices, or people. Since a number of new malware variants can be generated by reusing codes, malware attacks can be easily launched and thus become common in rece nt years, incurring huge losses in businesses, governments, financial institutes, health providers, etc. To defeat these attacks, malware classification is employed, which plays an essential role in anti-virus products. However, existing works that employ either static analysis or dynamic analysis have major weaknesses in complicated reverse engineering and time-consuming tasks. In this paper, we propose a visualized malware classification framework called VisMal, which provides highly efficient categorization with acceptable accuracy. VisMal converts malware samples into images and then applies a contrast-limited adaptive histogram equalization algorithm to enhance the similarity between malware image regions in the same family. We provided a proof-of-concept implementation and carried out an extensive evaluation to verify the performance of our framework. The evaluation results indicate that VisMal can classify a malware sample within 5.2ms and have an average accuracy of 96.0%. Moreover, VisMal provides security engineers with a simple visualization approach to further validate its performance.
Machine learning-based malware detection is known to be vulnerable to adversarial evasion attacks. The state-of-the-art is that there are no effective defenses against these attacks. As a response to the adversarial malware classification challenge o rganized by the MIT Lincoln Lab and associated with the AAAI-19 Workshop on Artificial Intelligence for Cyber Security (AICS2019), we propose six guiding principles to enhance the robustness of deep neural networks. Some of these principles have been scattered in the literature, but the others are introduced in this paper for the first time. Under the guidance of these six principles, we propose a defense framework to enhance the robustness of deep neural networks against adversarial malware evasion attacks. By conducting experiments with the Drebin Android malware dataset, we show that the framework can achieve a 98.49% accuracy (on average) against grey-box attacks, where the attacker knows some information about the defense and the defender knows some information about the attack, and an 89.14% accuracy (on average) against the more capable white-box attacks, where the attacker knows everything about the defense and the defender knows some information about the attack. The framework wins the AICS2019 challenge by achieving a 76.02% accuracy, where neither the attacker (i.e., the challenge organizer) knows the framework or defense nor we (the defender) know the attacks. This gap highlights the importance of knowing about the attack.
We present BPFroid -- a novel dynamic analysis framework for Android that uses the eBPF technology of the Linux kernel to continuously monitor events of user applications running on a real device. The monitored events are collected from different com ponents of the Android software stack: internal kernel functions, system calls, native library functions, and the Java API framework. As BPFroid hooks these events in the kernel, a malware is unable to trivially bypass monitoring. Moreover, using eBPF doesnt require any change to the Android system or the monitored applications. We also present an analytical comparison of BPFroid to other malware detection methods and demonstrate its usage by developing novel signatures to detect suspicious behavior that are based on it. These signatures are then evaluated using real apps. We also demonstrate how BPFroid can be used to capture forensic artifacts for further investigation. Our results show that BPFroid successfully alerts in real time when a suspicious behavioral signature is detected, without incurring a significant runtime performance overhead.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا