ﻻ يوجد ملخص باللغة العربية
We consider stochastic convex optimization problems, where several machines act asynchronously in parallel while sharing a common memory. We propose a robust training method for the constrained setting and derive non asymptotic convergence guarantees that do not depend on prior knowledge of update delays, objective smoothness, and gradient variance. Conversely, existing methods for this setting crucially rely on this prior knowledge, which render them unsuitable for essentially all shared-resources computational environments, such as clouds and data centers. Concretely, existing approaches are unable to accommodate changes in the delays which result from dynamic allocation of the machines, while our method implicitly adapts to such changes.
The increasing connectivity of data and cyber-physical systems has resulted in a growing number of cyber-attacks. Real-time detection of such attacks, through the identification of anomalous activity, is required so that mitigation and contingent act
This paper addresses the problem of multiclass classification with corrupted or noisy bandit feedback. In this setting, the learner may not receive true feedback. Instead, it receives feedback that has been flipped with some non-zero probability. We
In situations where explicit communication is limited, human collaborators act by learning to: (i) infer meaning behind their partners actions, and (ii) convey private information about the state to their partner implicitly through actions. The first
We explore a novel setting of the Multi-Armed Bandit (MAB) problem inspired from real world applications which we call bandits with stochastic delayed composite anonymous feedback (SDCAF). In SDCAF, the rewards on pulling arms are stochastic with res
In the NIPS 2017 Learning to Run challenge, participants were tasked with building a controller for a musculoskeletal model to make it run as fast as possible through an obstacle course. Top participants were invited to describe their algorithms. In