ﻻ يوجد ملخص باللغة العربية
We explore a novel setting of the Multi-Armed Bandit (MAB) problem inspired from real world applications which we call bandits with stochastic delayed composite anonymous feedback (SDCAF). In SDCAF, the rewards on pulling arms are stochastic with respect to time but spread over a fixed number of time steps in the future after pulling the arm. The complexity of this problem stems from the anonymous feedback to the player and the stochastic generation of the reward. Due to the aggregated nature of the rewards, the player is unable to associate the reward to a particular time step from the past. We present two algorithms for this more complicated setting of SDCAF using phase based extensions of the UCB algorithm. We perform regret analysis to show sub-linear theoretical guarantees on both the algorithms.
We study a constrained contextual linear bandit setting, where the goal of the agent is to produce a sequence of policies, whose expected cumulative reward over the course of $T$ rounds is maximum, and each has an expected cost below a certain thresh
We propose a generalization of the best arm identification problem in stochastic multi-armed bandits (MAB) to the setting where every pull of an arm is associated with delayed feedback. The delay in feedback increases the effective sample complexity
We study the adversarial multi-armed bandit problem where partial observations are available and where, in addition to the loss incurred for each action, a emph{switching cost} is incurred for shifting to a new action. All previously known results in
We study a decentralized cooperative stochastic multi-armed bandit problem with $K$ arms on a network of $N$ agents. In our model, the reward distribution of each arm is the same for each agent and rewards are drawn independently across agents and ti
Bandit algorithms have various application in safety-critical systems, where it is important to respect the system constraints that rely on the bandits unknown parameters at every round. In this paper, we formulate a linear stochastic multi-armed ban