ترغب بنشر مسار تعليمي؟ اضغط هنا

Carnegie Supernova Project II: The slowest rising Type Ia supernova LSQ14fmg and clues to the origin of super-Chandrasekhar/03fg-like events

80   0   0.0 ( 0 )
 نشر من قبل Eric Hsiao
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Type Ia supernova (SN Ia) LSQ14fmg exhibits exaggerated properties which may help to reveal the origin of the super-Chandrasekhar (or 03fg-like) group. The optical spectrum is typical of a 03fg-like SN Ia, but the light curves are unlike those of any SNe Ia observed. The light curves of LSQ14fmg rise extremely slowly. At -23 rest-frame days relative to B-band maximum, LSQ14fmg is already brighter than $M_V$=-19 mag before host extinction correction. The observed color curves show a flat evolution from the earliest observation to approximately one week after maximum. The near-infrared light curves peak brighter than -20.5 mag in the J and H bands, far more luminous than any 03fg-like SNe Ia with near-infrared observations. At one month past maximum, the optical light curves decline rapidly. The early, slow rise and flat color evolution are interpreted to result from an additional excess flux from a power source other than the radioactive decay of the synthesized $^{56}Ni$. The excess flux matches the interaction with a typical superwind of an asymptotic giant branch (AGB) star in density structure, mass-loss rate, and duration. The rapid decline starting at around one month past B-band maximum may be an indication of rapid cooling by active carbon monoxide (CO) formation, which requires a low temperature and high density environment. These peculiarities point to an AGB progenitor near the end of its evolution and the core degenerate scenario as the likely explosion mechanism for LSQ14fmg.



قيم البحث

اقرأ أيضاً

100 - C. Ashall , J. Lu , E. Y. Hsiao 2021
We present a multi-wavelength photometric and spectroscopic analysis of thirteen Super-Chandrasekhar Mass/2003fg-like type Ia Supernova (SNe~Ia). Nine of these objects were observed by the Carnegie Supernova Project. 2003fg-like have slowly declining light curves ($Delta m_{15}$(B) $<$1.3 mag), and peak absolute $B$-band magnitudes between $-19<M_{B}<-21$~mag. Many 2003fg-like are located in the same part of the luminosity width relation as normal SNe~Ia. In the optical $B$ and $V$ bands, 2003fg-like look like normal SNe~Ia, but at redder wavelengths they diverge. Unlike other luminous SNe~Ia, 2003fg-like generally have only one $i$-band maximum which peaks after the epoch of $B$-band maximum, while their NIR light curve rise times can be $gtrsim$40 days longer than those of normal SNe~Ia. They are also at least one magnitude brighter in the NIR bands than normal SNe~Ia, peaking above $M_H < -19$~mag, and generally have negative Hubble residuals, which may be the cause of some systematics in dark energy experiments. Spectroscopically, 2003fg-like exhibit peculiarities such as unburnt carbon well past maximum light, a large spread (8000--12000~km/s) in SiII $lambda$6355 velocities at maximum light with no rapid early velocity decline, and no clear $H$-band break at +10~d, e. We find that SNe with a larger pseudo equivalent width of CII at maximum light have lower SiII $lambda$6355 velocities and slower declining light curves. There are also multiple factors that contribute to the peak luminosity of 2003fg-like. The explosion of a C-O degenerate core inside a carbon-rich envelope is consistent with these observations. Such a configuration may come from the core degenerate scenario.
We use the spectroscopy and homogeneous photometry of 97 Type Ia supernovae obtained by the emph{Carnegie Supernova Project} as well as a subset of 36 Type Ia supernovae presented by Zheng et al. (2018) to examine maximum-light correlations in a four -dimensional (4-D) parameter space: $B$-band absolute magnitude, $M_B$, ion{Si}{2}~$lambda6355$ velocity, vsi, and ion{Si}{2} pseudo-equivalent widths pEW(ion{Si}{2}~$lambda6355$) and pEW(ion{Si}{2}~$lambda5972$). It is shown using Gaussian mixture models (GMMs) that the original four groups in the Branch diagram are well-defined and robust in this parameterization. We find three continuous groups that describe the behavior of our sample in [$M_B$, vsi] space. Extending the GMM into the full 4-D space yields a grouping system that only slightly alters group definitions in the [$M_B$, vsi] projection, showing that most of the clustering information in [$M_B$, vsi] is already contained in the 2-D GMM groupings. However, the full 4-D space does divide group membership for faster objects between core-normal and broad-line objects in the Branch diagram. A significant correlation between $M_B$ and pEW(ion{Si}{2}~$lambda5972$) is found, which implies that Branch group membership can be well-constrained by spectroscopic quantities alone. In general, we find that higher-dimensional GMMs reduce the uncertainty of group membership for objects between the originally defined Branch groups. We also find that the broad-line Branch group becomes nearly distinct with the inclusion of vsi, indicating that this subclass of SNe Ia may be somehow different from the other groups.
We present bolometric light curves constructed from multi-wavelength photometry of Type Ia supernovae (SNe Ia) from the Carnegie Supernova Project and the CfA Supernova Group, using near-infrared observations to provide robust constraints on host gal axy dust extinction. This set of light curves form a well-measured reference set for comparison with theoretical models. Ejected mass and synthesized $^{56}$Ni mass are inferred for each SN Ia from its bolometric light curve using a semi-analytic Bayesian light curve model, and fitting formulae provided in terms of light curve width parameters from the SALT2 and SNooPy light curve fitters. A weak bolometric width-luminosity relation is confirmed, along with a correlation between ejected mass and the bolometric light curve width. SNe Ia likely to have sub-Chandrasekhar ejected masses belong preferentially to the broad-line and cool-photosphere spectroscopic subtypes, and have higher photospheric velocities and populate older, higher-mass host galaxies than SNe Ia consistent with Chandrasekhar-mass explosions. Two peculiar events, SN 2006bt and SN 2006ot, have normal peak luminosities but appear to have super-Chandrasekhar ejected masses.
The Carnegie Supernova Project-II (CSP-II) was an NSF-funded, four-year program to obtain optical and near-infrared observations of a Cosmology sample of $sim100$ Type Ia supernovae located in the smooth Hubble flow ($0.03 lesssim z lesssim 0.10$). L ight curves were also obtained of a Physics sample composed of 90 nearby Type Ia supernovae at $z leq 0.04$ selected for near-infrared spectroscopic time-series observations. The primary emphasis of the CSP-II is to use the combination of optical and near-infrared photometry to achieve a distance precision of better than 5%. In this paper, details of the supernova sample, the observational strategy, and the characteristics of the photometric data are provided. In a companion paper, the near-infrared spectroscopy component of the project is presented.
185 - J. Lu , C. Ashall , E. Y. Hsiao 2021
We present photometric and spectroscopic observations of the 03fg-like type Ia supernova (SN Ia) ASASSN-15hy from the ultraviolet (UV) to the near-infrared (NIR). ASASSN-15hy shares many of the hallmark characteristics of 03fg-like SNe Ia, previously referred to as super-Chandrasekhar SNe Ia. It is bright in the UV and NIR, lacks a clear i-band secondary maximum, shows a strong and persistent C II feature, and has a low Si II $lambda$6355 velocity. However, some of its properties are also extreme among the subgroup. ASASSN-15hy is under-luminous (M$_{B,peak}=-19.14^{+0.11}_{-0.16}$ mag), red ($(B-V)_{Bmax}=0.18^{+0.01}_{-0.03}$ mag), yet slowly declining ($Delta{m_{15}}(B)=0.72 pm 0.04$ mag). It has the most delayed onset of the i-band maximum of any 03fg-like SN. ASASSN-15hy lacks the prominent H-band break emission feature that is typically present during the first month past maximum in normal SNe Ia. Such events may be a potential problem for high-redshift SN Ia cosmology. ASASSN-15hy may be explained in the context of an explosion of a degenerate core inside a non-degenerate envelope. The explosion impacting the non-degenerate envelope with a large mass provides additional luminosity and low ejecta velocities. An initial deflagration burning phase is critical in reproducing the low $^{56}$Ni mass and luminosity, while the large core mass is essential in providing the large diffusion time scales required to produce the broad light curves. The model consists of a rapidly rotating 1.47 $M_{odot}$ degenerate core and a 0.8 $M_{odot}$ non-degenerate envelope. This deflagration core-degenerate scenario may result from the merger between a white dwarf and the degenerate core of an asymptotic giant branch star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا