ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Ca-strong 1991bg-like type Ia supernova 2016hnk: evidence for a Chandrasekhar-mass explosion

152   0   0.0 ( 0 )
 نشر من قبل Llu\\'is Galbany
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a comprehensive dataset of optical and near-infrared photometry and spectroscopy of type~Ia supernova (SN) 2016hnk, combined with integral field spectroscopy (IFS) of its host galaxy, MCG -01-06-070, and nearby environment. Properties of the SN local environment are characterized by means of single stellar population synthesis applied to IFS observations taken two years after the SN exploded. SN 2016hnk spectra are compared to other 1991bg-like SNe Ia, 2002es-like SNe Ia, and Ca-rich transients. In addition, abundance stratification modelling is used to identify the various spectral features in the early phase spectral sequence and the dataset is also compared to a modified non-LTE model previously produced for the sublumnious SN 1999by. SN 2016hnk is consistent with being a sub-luminous (M$_{rm B}=-16.7$ mag, s$_{rm BV}$=0.43$pm$0.03), highly reddened object. IFS of its host galaxy reveals both a significant amount of dust at the SN location, as well as residual star formation and a high proportion of old stellar populations in the local environment compared to other locations in the galaxy, which favours an old progenitor for SN 2016hnk. Inspection of a nebular spectrum obtained one year after maximum contains two narrow emission lines attributed to the forbidden [Ca II] $lambdalambda$7291,7324 doublet with a Doppler shift of 700 km s$^{-1}$. Based on various observational diagnostics, we argue that the progenitor of SN 2016hnk was likely a near Chandrasekhar-mass ($M_{rm Ch}$) carbon-oxygen white dwarf that produced 0.108 $M_odot$ of $^{56}$Ni. Our modeling suggests that the narrow [Ca II] features observed in the nebular spectrum are associated with $^{48}$Ca from electron capture during the explosion, which is expected to occur only in white dwarfs that explode near or at the $M_{rm Ch}$ limit.



قيم البحث

اقرأ أيضاً

100 - C. Ashall , J. Lu , E. Y. Hsiao 2021
We present a multi-wavelength photometric and spectroscopic analysis of thirteen Super-Chandrasekhar Mass/2003fg-like type Ia Supernova (SNe~Ia). Nine of these objects were observed by the Carnegie Supernova Project. 2003fg-like have slowly declining light curves ($Delta m_{15}$(B) $<$1.3 mag), and peak absolute $B$-band magnitudes between $-19<M_{B}<-21$~mag. Many 2003fg-like are located in the same part of the luminosity width relation as normal SNe~Ia. In the optical $B$ and $V$ bands, 2003fg-like look like normal SNe~Ia, but at redder wavelengths they diverge. Unlike other luminous SNe~Ia, 2003fg-like generally have only one $i$-band maximum which peaks after the epoch of $B$-band maximum, while their NIR light curve rise times can be $gtrsim$40 days longer than those of normal SNe~Ia. They are also at least one magnitude brighter in the NIR bands than normal SNe~Ia, peaking above $M_H < -19$~mag, and generally have negative Hubble residuals, which may be the cause of some systematics in dark energy experiments. Spectroscopically, 2003fg-like exhibit peculiarities such as unburnt carbon well past maximum light, a large spread (8000--12000~km/s) in SiII $lambda$6355 velocities at maximum light with no rapid early velocity decline, and no clear $H$-band break at +10~d, e. We find that SNe with a larger pseudo equivalent width of CII at maximum light have lower SiII $lambda$6355 velocities and slower declining light curves. There are also multiple factors that contribute to the peak luminosity of 2003fg-like. The explosion of a C-O degenerate core inside a carbon-rich envelope is consistent with these observations. Such a configuration may come from the core degenerate scenario.
In the version of the SD scenario of SNe Ia studied here, a CO WD explodes close to the Chandrasekhar limit after accreting material from a non-degenerate He companion. In the present study, we employ the Stellar GADGET code to perform 3D hydrodynami cal simulations of the interaction of the SN Ia ejecta with the He companion taking into account its orbital motion and spin. It is found that only 2%--5% of the initial companion mass are stripped off from the outer layers of He companions due to the SN impact. The dependence of the unbound mass (or the kick velocity) on the orbital separation can be fitted in good approximation by a power law for a given companion model. After the SN impact, the outer layers of a He donor star are significantly enriched with heavy elements from the low-expansion-velocity tail of SN Ia ejecta. The total mass of accumulated SN-ejecta material on the companion surface reaches about > 10e-3 M_sun for different companion models. This enrichment with heavy elements provides a potential way to observationally identify the surviving companion star in SN remnants. Finally, by artificially adjusting the explosion energy of the W7 explosion model, we find that the total accumulation of SN ejecta on the companion surface is also dependent on the explosion energy with a power law relation in good approximation.
116 - Brandon Doull , E. Baron 2011
Spectroscopic analyses of Type Ia supernovae have shown there exist four spectroscopic groups---cools, broad line, shallow silicon, and core normal---defined by the widths of the Si II features at 5972 Angstroms and 6355 Angstroms. 1991bg-likes are c lassified as cools. Cools are dim, undergo a rapid decline in luminosity, and produce significantly less nickel than normal Type Ia supernovae. They also have an unusually deep and wide trough in their spectra around 4200 Angstroms and a relatively strong Si II absorption attributed to the line at 5972 Angstroms. We examine the spectra of supernova (SN) 1991bg and the cools SN 1997cn, SN 1999by, and SN 2005bl using the highly parameterized synthetic spectrum code SYNOW, and find general agreement with similar spectroscopic studies. Our analysis reveals that this group of supernovae is fairly homogeneous, with many of the blue spectral features well fit by Fe II. The nature of the spectroscopic commonalities and the variations in the class are discussed. Finally, we examine intermediates such as SN 2004eo and discuss the spectroscopic subgroup distribution of Type Ia supernovae.
Context: Manganese is predominantly synthesised in Type Ia supernova (SN Ia) explosions. Owing to the entropy dependence of the Mn yield in explosive thermonuclear burning, SNe Ia involving near Chandrasekhar-mass white dwarfs (WDs) are predicted to produce Mn to Fe ratios significantly exceeding those of SN Ia explosions involving sub-Chandrasekhar mass primary WDs. Of all current supernova explosion models, only SN Ia models involving near-Chandrasekhar mass WDs produce [Mn/Fe] > 0.0. Aims: Using the specific yields for competing SN Ia scenarios, we aim to constrain the relative fractions of exploding near-Chandrasekhar mass to sub-Chandrasekhar mass primary WDs in the Galaxy. Methods: We extract the Mn yields from three-dimensional thermonuclear supernova simulations referring to different initial setups and progenitor channels. We then compute the chemical evolution of Mn in the Solar neighborhood, assuming SNe Ia are made up of different relative fractions of the considered explosion models. Results: We find that due to the entropy dependence of freeze-out yields from nuclear statistical equilibrium, [Mn/Fe] strongly depends on the mass of the exploding WD, with near-Chandraskher mass WDs producing substantially higher [Mn/Fe] than sub-Chandrasekhar mass WDs. Of all nucleosynthetic sources potentially influencing the chemical evolution of Mn, only explosion models involving the thermonuclear incineration of near-Chandrasekhar mass WDs predict solar or super-solar [Mn/Fe]. Consequently, we find in our chemical evolution calculations that the observed [Mn/Fe] in the Solar neighborhood at [Fe/H] > 0.0 cannot be reproduced without near-Chandrasekhar mass SN Ia primaries. Assuming that 50 per cent of all SNe Ia stem from explosive thermonuclear burning in near-Chandrasekhar mass WDs results in a good match to data.
80 - Evan N. Kirby 2019
There is no consensus on the progenitors of Type Ia supernovae (SNe Ia) despite their importance for cosmology and chemical evolution. We address this question by using our previously published catalogs of Mg, Si, Ca, Cr, Fe, Co, and Ni abundances in dwarf galaxy satellites of the Milky Way to constrain the mass at which the white dwarf explodes during a typical SN Ia. We fit a simple bi-linear model to the evolution of [X/Fe] with [Fe/H], where X represents each of the elements mentioned above. We use the evolution of [Mg/Fe] coupled with theoretical supernova yields to isolate what fraction of the elements originated in SNe Ia. Then, we infer the [X/Fe] yield of SNe Ia for all of the elements except Mg. We compare these observationally inferred yields to recent theoretical predictions for two classes of Chandrasekhar-mass (M_Ch) SN Ia as well as sub-M_Ch SNe Ia. Most of the inferred SN Ia yields are consistent with all of the theoretical models, but [Ni/Fe] is consistent only with sub-M_Ch models. We conclude that the dominant type of SN Ia in ancient dwarf galaxies is the explosion of a sub-M_Ch white dwarf. The Milky Way and dwarf galaxies with extended star formation histories have higher [Ni/Fe] abundances, which could indicate that the dominant class of SN Ia is different for galaxies where star formation lasted for at least several Gyr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا