ترغب بنشر مسار تعليمي؟ اضغط هنا

Learned Interpretable Residual Extragradient ISTA for Sparse Coding

122   0   0.0 ( 0 )
 نشر من قبل Fanhua Shang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, the study on learned iterative shrinkage thresholding algorithm (LISTA) has attracted increasing attentions. A large number of experiments as well as some theories have proved the high efficiency of LISTA for solving sparse coding problems. However, existing LISTA methods are all serial connection. To address this issue, we propose a novel extragradient based LISTA (ELISTA), which has a residual structure and theoretical guarantees. In particular, our algorithm can also provide the interpretability for Res-Net to a certain extent. From a theoretical perspective, we prove that our method attains linear convergence. In practice, extensive empirical results verify the advantages of our method.

قيم البحث

اقرأ أيضاً

In Dictionary Learning one tries to recover incoherent matrices $A^* in mathbb{R}^{n times h}$ (typically overcomplete and whose columns are assumed to be normalized) and sparse vectors $x^* in mathbb{R}^h$ with a small support of size $h^p$ for some $0 <p < 1$ while having access to observations $y in mathbb{R}^n$ where $y = A^*x^*$. In this work we undertake a rigorous analysis of whether gradient descent on the squared loss of an autoencoder can solve the dictionary learning problem. The Autoencoder architecture we consider is a $mathbb{R}^n rightarrow mathbb{R}^n$ mapping with a single ReLU activation layer of size $h$. Under very mild distributional assumptions on $x^*$, we prove that the norm of the expected gradient of the standard squared loss function is asymptotically (in sparse code dimension) negligible for all points in a small neighborhood of $A^*$. This is supported with experimental evidence using synthetic data. We also conduct experiments to suggest that $A^*$ is a local minimum. Along the way we prove that a layer of ReLU gates can be set up to automatically recover the support of the sparse codes. This property holds independent of the loss function. We believe that it could be of independent interest.
The fields of signal and image processing have been deeply influenced by the introduction of deep neural networks. These are successfully deployed in a wide range of real-world applications, obtaining state of the art results and surpassing well-know n and well-established classical methods. Despite their impressive success, the architectures used in many of these neural networks come with no clear justification. As such, these are usually treated as black box machines that lack any kind of interpretability. A constructive remedy to this drawback is a systematic design of such networks by unfolding well-understood iterative algorithms. A popular representative of this approach is the Iterative Shrinkage-Thresholding Algorithm (ISTA) and its learned version -- LISTA, aiming for the sparse representations of the processed signals. In this paper we revisit this sparse coding task and propose an unfolded version of a greedy pursuit algorithm for the same goal. More specifically, we concentrate on the well-known Orthogonal-Matching-Pursuit (OMP) algorithm, and introduce its unfolded and learned version. Key features of our Learned Greedy Method (LGM) are the ability to accommodate a dynamic number of unfolded layers, and a stopping mechanism based on representation error, both adapted to the input. We develop several variants of the proposed LGM architecture and test some of them in various experiments, demonstrating their flexibility and efficiency.
Despite the enormous success of neural networks, they are still hard to interpret and often overfit when applied to low-sample-size (LSS) datasets. To tackle these obstacles, we propose a framework for training locally sparse neural networks where th e local sparsity is learned via a sample-specific gating mechanism that identifies the subset of most relevant features for each measurement. The sample-specific sparsity is predicted via a textit{gating} network, which is trained in tandem with the textit{prediction} network. By learning these subsets and weights of a prediction model, we obtain an interpretable neural network that can handle LSS data and can remove nuisance variables, which are irrelevant for the supervised learning task. Using both synthetic and real-world datasets, we demonstrate that our method outperforms state-of-the-art models when predicting the target function with far fewer features per instance.
It has recently been observed that certain extremely simple feature encoding techniques are able to achieve state of the art performance on several standard image classification benchmarks including deep belief networks, convolutional nets, factored RBMs, mcRBMs, convolutional RBMs, sparse autoencoders and several others. Moreover, these triangle or soft threshold encodings are ex- tremely efficient to compute. Several intuitive arguments have been put forward to explain this remarkable performance, yet no mathematical justification has been offered. The main result of this report is to show that these features are realized as an approximate solution to the a non-negative sparse coding problem. Using this connection we describe several variants of the soft threshold features and demonstrate their effectiveness on two image classification benchmark tasks.
We solve the analysis sparse coding problem considering a combination of convex and non-convex sparsity promoting penalties. The multi-penalty formulation results in an iterative algorithm involving proximal-averaging. We then unfold the iterative al gorithm into a trainable network that facilitates learning the sparsity prior. We also consider quantization of the network weights. Quantization makes neural networks efficient both in terms of memory and computation during inference, and also renders them compatible for low-precision hardware deployment. Our learning algorithm is based on a variant of the ADAM optimizer in which the quantizer is part of the forward pass and the gradients of the loss function are evaluated corresponding to the quantized weights while doing a book-keeping of the high-precision weights. We demonstrate applications to compressed image recovery and magnetic resonance image reconstruction. The proposed approach offers superior reconstruction accuracy and quality than state-of-the-art unfolding techniques and the performance degradation is minimal even when the weights are subjected to extreme quantization.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا