ﻻ يوجد ملخص باللغة العربية
It has recently been observed that certain extremely simple feature encoding techniques are able to achieve state of the art performance on several standard image classification benchmarks including deep belief networks, convolutional nets, factored RBMs, mcRBMs, convolutional RBMs, sparse autoencoders and several others. Moreover, these triangle or soft threshold encodings are ex- tremely efficient to compute. Several intuitive arguments have been put forward to explain this remarkable performance, yet no mathematical justification has been offered. The main result of this report is to show that these features are realized as an approximate solution to the a non-negative sparse coding problem. Using this connection we describe several variants of the soft threshold features and demonstrate their effectiveness on two image classification benchmark tasks.
In Dictionary Learning one tries to recover incoherent matrices $A^* in mathbb{R}^{n times h}$ (typically overcomplete and whose columns are assumed to be normalized) and sparse vectors $x^* in mathbb{R}^h$ with a small support of size $h^p$ for some
We solve the analysis sparse coding problem considering a combination of convex and non-convex sparsity promoting penalties. The multi-penalty formulation results in an iterative algorithm involving proximal-averaging. We then unfold the iterative al
We consider the dictionary learning problem, where the aim is to model the given data as a linear combination of a few columns of a matrix known as a dictionary, where the sparse weights forming the linear combination are known as coefficients. Since
The quality of data representation in deep learning methods is directly related to the prior model imposed on the representations; however, generally used fixed priors are not capable of adjusting to the context in the data. To address this issue, we
State-of-the-art methods for Convolutional Sparse Coding usually employ Fourier-domain solvers in order to speed up the convolution operators. However, this approach is not without shortcomings. For example, Fourier-domain representations implicitly