ترغب بنشر مسار تعليمي؟ اضغط هنا

Fully CMOS-compatible passive TiO2-based memristor crossbars for in-memory computing

104   0   0.0 ( 0 )
 نشر من قبل Abdelouadoud El Mesoudy
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Brain-inspired computing and neuromorphic hardware are promising approaches that offer great potential to overcome limitations faced by current computing paradigms based on traditional von-Neumann architecture. In this regard, interest in developing memristor crossbar arrays has increased due to their ability to natively perform in-memory computing and fundamental synaptic operations required for neural network implementation. For optimal efficiency, crossbar-based circuits need to be compatible with fabrication processes and materials of industrial CMOS technologies. Herein, we report a complete CMOS-compatible fabrication process of TiO2-based passive memristor crossbars with 700 nm wide electrodes. We show successful bottom electrode fabrication by a damascene process, resulting in an optimised topography and a surface roughness as low as 1.1 nm. DC sweeps and voltage pulse programming yield statistical results related to synaptic-like multilevel switching. Both cycle-to-cycle and device-to-device variability are investigated. Analogue programming of the conductance using sequences of 200 ns voltage pulses suggest that the fabricated memories have a multilevel capacity of at least 3 bits due to the cycle-to-cycle reproducibility.



قيم البحث

اقرأ أيضاً

Recent breakthroughs in recurrent deep neural networks with long short-term memory (LSTM) units has led to major advances in artificial intelligence. State-of-the-art LSTM models with significantly increased complexity and a large number of parameter s, however, have a bottleneck in computing power resulting from limited memory capacity and data communication bandwidth. Here we demonstrate experimentally that LSTM can be implemented with a memristor crossbar, which has a small circuit footprint to store a large number of parameters and in-memory computing capability that circumvents the von Neumann bottleneck. We illustrate the capability of our system by solving real-world problems in regression and classification, which shows that memristor LSTM is a promising low-power and low-latency hardware platform for edge inference.
Brain-inspired neuromorphic computing which consist neurons and synapses, with an ability to perform complex information processing has unfolded a new paradigm of computing to overcome the von Neumann bottleneck. Electronic synaptic memristor devices which can compete with the biological synapses are indeed significant for neuromorphic computing. In this work, we demonstrate our efforts to develop and realize the graphene oxide (GO) based memristor device as a synaptic device, which mimic as a biological synapse. Indeed, this device exhibits the essential synaptic learning behavior including analog memory characteristics, potentiation and depression. Furthermore, spike-timing-dependent-plasticity learning rule is mimicked by engineering the pre- and post-synaptic spikes. In addition, non-volatile properties such as endurance, retentivity, multilevel switching of the device are explored. These results suggest that Ag/GO/FTO memristor device would indeed be a potential candidate for future neuromorphic computing applications. Keywords: RRAM, Graphene oxide, neuromorphic computing, synaptic device, potentiation, depression
Collocated data processing and storage are the norm in biological systems. Indeed, the von Neumann computing architecture, that physically and temporally separates processing and memory, was born more of pragmatism based on available technology. As o ur ability to create better hardware improves, new computational paradigms are being explored. Integrated photonic circuits are regarded as an attractive solution for on-chip computing using only light, leveraging the increased speed and bandwidth potential of working in the optical domain, and importantly, removing the need for time and energy sapping electro-optical
We report a complementary metal oxide semiconductor (CMOS) technology compatible ferroelectric tunnel junction memristor grown directly on top of a Silicon substrate using a scandium doped aluminum nitride as the ferroelectric layer.
The search for a compatible application of memristor-CMOS logic gates has remained elusive, as the data density benefits are offset by slow switching speeds and resistive dissipation. Active microdisplays typically prioritize pixel density (and there fore resolution) over that of speed, where the most widely used refresh rates fall between 25-240 Hz. Therefore, memristor-CMOS logic is a promising fit for peripheral IO logic in active matrix displays. In this paper, we design and implement a ternary 1-3 line decoder and a ternary 2-9 line decoder which are used to program a seven segment LED display. SPICE simulations are conducted in a 50-nm process, and the decoders are synthesized on an Altera Cyclone IV field-programmable gate array (FPGA) development board which implements a ternary memristor model designed in Quartus II. We compare our hardware results to a binary coded decimal (BCD)-to-seven segment display decoder, and show our memristor-CMOS approach reduces the total IO power consumption by a factor of approximately 6 times at a maximum synthesizable frequency of 293.77MHz. Although the speed is approximately half of the native built-in BCD-to-seven decoder, the comparatively slow refresh rates of typical microdisplays indicate this to be a tolerable trade-off, which promotes data density over speed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا