ﻻ يوجد ملخص باللغة العربية
For an integer $rge0$, we prove the $r$th order Reshetnyak formula for the ray transform of rank $m$ symmetric tensor fields on $mathbb{R}^n$. Certain differential operators $A^{(m,r,l)} (0le lle r)$ on the sphere $mathbb{S}^{n-1}$ are main ingredients of the formula. The operators are defined by an algorithm that can be applied for any $r$ although the volume of calculations grows fast with $r$. The algorithm is realized for small values of $r$ and Reshetnyak formulas of orders $0,1,2$ are presented in an explicit form.
By using, among other things, the Fourier analysis techniques on hyperbolic and symmetric spaces, we establish the Hardy-Sobolev-Mazya inequalities for higher order derivatives on half spaces. The proof relies on a Hardy-Littlewood-Sobolev inequality
We study the problem of inverting a restricted transverse ray transform to recover a symmetric $m$-tensor field in $mathbb{R}^3$ using microlocal analysis techniques. More precisely, we prove that a symmetric $m$-tensor field can be recovered up to a
We study {em $ abla$-Sobolev spaces} and {em $ abla$-differential operators} with coefficients in general Hermitian vector bundles on Riemannian manifolds, stressing a coordinate free approach that uses connections (which are typically denoted $ abla
Motivated by a recent work of Ache and Chang concerning the sharp Sobolev trace inequality and Lebedev-Milin inequalities of order four on the Euclidean unit ball, we derive such inequalities on the Euclidean unit ball for higher order derivatives. B
In this paper we study the attenuated $X$-ray transform of 2-tensors supported in strictly convex bounded subsets in the Euclidean plane. We characterize its range and reconstruct all possible 2-tensors yielding identical $X$-ray data. The characteri