ﻻ يوجد ملخص باللغة العربية
Motivated by a recent work of Ache and Chang concerning the sharp Sobolev trace inequality and Lebedev-Milin inequalities of order four on the Euclidean unit ball, we derive such inequalities on the Euclidean unit ball for higher order derivatives. By using, among other things, the scattering theory on hyperbolic spaces and the generalized Poisson kernel, we obtain the explicit formulas of extremal functions of such inequations. Moreover, we also derive the sharp trace Sobolev inequalities on half spaces for higher order derivatives. Finally, we compute the explicit formulas of adapted metric, introduced by Case and Chang, on the Euclidean unit ball, which is of independent interest.
By using, among other things, the Fourier analysis techniques on hyperbolic and symmetric spaces, we establish the Hardy-Sobolev-Mazya inequalities for higher order derivatives on half spaces. The proof relies on a Hardy-Littlewood-Sobolev inequality
The sharp trace inequality of Jose Escobar is extended to traces for the fractional Laplacian on R^n and a complete characterization of cases of equality is discussed. The proof proceeds via Fourier transform and uses Liebs sharp form of the Hardy-Littlewood-Sobolev inequality.
We consider reaction-diffusion equations either posed on Riemannian manifolds or in the Euclidean weighted setting, with pow-er-type nonlinearity and slow diffusion of porous medium time. We consider the particularly delicate case $p<m$ in problem (1
In this paper we establish the reversed sharp Hardy-Littlewood-Sobolev (HLS for short) inequality on the upper half space and obtain a new HLS type integral inequality on the upper half space (extending an inequality found by Hang, Wang and Yan in ci
This paper is devoted to a new family of reverse Hardy-Littlewood-Sobolev inequalities which involve a power law kernel with positive exponent. We investigate the range of the admissible parameters and characterize the optimal functions. A striking o