ترغب بنشر مسار تعليمي؟ اضغط هنا

Sobolev spaces and $ abla$-differential operators on manifolds I: basic properties and weighted spaces

170   0   0.0 ( 0 )
 نشر من قبل Victor Nistor
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study {em $ abla$-Sobolev spaces} and {em $ abla$-differential operators} with coefficients in general Hermitian vector bundles on Riemannian manifolds, stressing a coordinate free approach that uses connections (which are typically denoted $ abla$). These concepts arise naturally from Partial Differential Equations, including some that are formulated on plain Euclidean domains, such as the weighted Sobolev spaces used to study PDEs on singular domains. We prove several basic properties of the $ abla$-Sobolev spaces and of the $ abla$-differential operators on general manifolds. For instance, we prove mapping properties for our differential operators and independence of the $ abla$-Sobolev spaces on the choices of the connection $ abla$ with respect to totally bounded perturbations. We introduce a {em Frechet finiteness condition} (FFC) for totally bounded vector fields, which is satisfied, for instance, by open subsets of manifolds with bounded geometry. When (FFC) is satisfied, we provide several equivalent definitions of our $ abla$-Sobolev spaces and of our $ abla$-differential operators. We examine in more detail the particular case of domains in the Euclidean space, including the case of weighted Sobolev spaces. We also introduce and study the notion of a {em $ abla$-bidifferential} operator (a bilinear version of differential operators), obtaining results similar to those obtained for $ abla$-differential operators. Bilinear differential operators are necessary for a global, geometric discussion of variational problems. We tried to write the paper so that it is accessible to a large audience.



قيم البحث

اقرأ أيضاً

176 - Guozhen Lu , Qiaohua Yang 2019
Using the Fourier analysis techniques on hyperbolic spaces and Greens function estimates, we confirm in this paper the conjecture given by the same authors in [43]. Namely, we prove that the sharp constant in the $frac{n-1}{2}$-th order Hardy-Sobolev -Mazya inequality in the upper half space of dimension $n$ coincides with the best $frac{n-1}{2}$-th order Sobolev constant when $n$ is odd and $ngeq9$ (See Theorem 1.6). We will also establish a lower bound of the coefficient of the Hardy term for the $k-$th order Hardy-Sobolev-Mazya inequality in upper half space in the remaining cases of dimension $n$ and $k$-th order derivatives (see Theorem 1.7). Precise expressions and optimal bounds for Greens functions of the operator $ -Delta_{mathbb{H}}-frac{(n-1)^{2}}{4}$ on the hyperbolic space $mathbb{B}^n$ and operators of the product form are given, where $frac{(n-1)^{2}}{4}$ is the spectral gap for the Laplacian $-Delta_{mathbb{H}}$ on $mathbb{B}^n$. Finally, we give the precise expression and optimal pointwise bound of Greens function of the Paneitz and GJMS operators on hyperbolic space, which are of their independent interest (see Theorem 1.10).
207 - Hongjie Dong , Doyoon Kim 2014
We consider both divergence and non-divergence parabolic equations on a half space in weighted Sobolev spaces. All the leading coefficients are assumed to be only measurable in the time and one spatial variable except one coefficient, which is assume d to be only measurable either in the time or the spatial variable. As functions of the other variables the coefficients have small bounded mean oscillation (BMO) semi-norms. The lower-order coefficients are allowed to blow up near the boundary with a certain optimal growth condition. As a corollary, we also obtain the corresponding results for elliptic equations.
186 - Yiyuan Zhang , Guangfu Cao , Li He 2021
In this paper, we investigate the boundedness of Toeplitz product $T_{f}T_{g}$ and Hankel product $H_{f}^{*} H_{g}$ on Fock-Sobolev space for two polynomials $f$ and $g$ in $z,overline{z}inmathbb{C}^{n}$. As a result, the boundedness of Toeplitz oper ator $T_{f}$ and Hankel operator $H_{f}$ with the polynomial symbol $f$ in $z,overline{z}inmathbb{C}^{n}$ is characterized.
In this work we continue our study initiated in cite{GFGP} on the uniqueness properties of real solutions to the IVP associated to the Benjamin-Ono (BO) equation. In particular, we shall show that the uniqueness results established in cite{GFGP} do n ot extend to any pair of non-vanishing solutions of the BO equation. Also, we shall prove that the uniqueness result established in cite{GFGP} under a hypothesis involving information of the solution at three different times can not be relaxed to two different times.
86 - Yongjiang Duan , Siyu Wang , 2021
Let $mathcal{D}$ be the class of radial weights on the unit disk which satisfy both forward and reverse doubling conditions. Let $g$ be an analytic function on the unit disk $mathbb{D}$. We characterize bounded and compact Volterra type integration o perators [ J_{g}(f)(z)=int_{0}^{z}f(lambda)g(lambda)dlambda ] between weighted Bergman spaces $L_{a}^{p}(omega )$ induced by $mathcal{D}$ weights and Hardy spaces $H^{q}$ for $0<p,q<infty$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا