ﻻ يوجد ملخص باللغة العربية
Motivated by the recent discovery of the first hidden charm pentaquark state with strangeness $P_{cs}(4459)$ by the LHCb Collaboration, we study the likely existence of a three-body $Sigma_{c}bar{D}bar{K}$ bound state, which shares the same minimal quark content as $P_{cs}(4459)$. The $Sigma_{c}bar{D}$ and $DK$ interactions are determined by reproducing $P_c(4312)$ and $D_{s0}^*(2317)$ as $Sigma_cbar{D}$ and $bar{D}bar{K}$ molecules, respectively, while the $Sigma_cbar{K}$ interaction is constrained by chiral effective theory. We indeed find a three-body bound state by solving the Schrodinger equation using the Gaussian Expansion Method, which can be viewed as an excited hidden charm pentaquark state with strangeness, $P_{cs}^*(4739)$, with $I(J^P)=1(1/2^+)$ and a binding energy of $77.8^{+25}_{-10.3}$ MeV. We further study its strong decays via triangle diagrams and show that its partial decay widths into $DXi_c$ and $D_s^*Sigma_c$ are of a few tens MeV, with the former being dominant.
We study the $P_{cs}(4459)^0$ recently observed by LHCb using the method of QCD sum rules. Our results support its interpretation as the $bar D^* Xi_c$ hadronic molecular state of either $J^P=1/2^-$ or $3/2^-$. Within the hadronic molecular picture,
The production of the hidden-charm pentaquarks $P_{c}$ via pion-induced reaction on a proton target is investigated within an effective Lagrangian approach. Three experimentally observed states, $P_c(4312)$, $P_c(4440)$, and $P_c(4457)$, are consider
Besides being important to determine Standard Model parameters such as the CKM matrix elements $|V_{cb}|$ and $|V_{ub}|$, semileptonic $B$ decays seem also promising to reveal new physics (NP) phenomena, in particular in connection with the possibili
The mass and coupling of the scalar tetraquark $T_{bb;overline{u}overline{d }}^{-}$ (hereafter $T_{b:overline{d}}^{-} $) are calculated in the context of the QCD two-point sum rule method. In computations we take into account effects of various quark
The mass and coupling of the doubly charmed $J^P=0^{-}$ diquark-antidiquark states $T_{cc;bar{s} bar{s}}^{++}$ and $T_{cc;bar{d} bar{s}}^{++}$ that bear two units of the electric charge are calculated by means of QCD two-point sum rule method. Comput