ﻻ يوجد ملخص باللغة العربية
In most cases, excited state quantum phase transitions can be associated with the existence of critical points (local extrema or saddle points) in a systems classical limit energy functional. However, an excited-state quantum phase transition might also stem from the lowering of the asymptotic energy of the corresponding energy functional. One such example takes place in the 2D vibron model, once an anharmonic term in the form of a quadratic bosonic number operator is added to the Hamiltonian. The study of this case in the broken-symmetry phase was presented in Phys. Rev. A. 81 050101 (2010). In the present work, we delve further into the nature of this excited-state quantum phase transition and we characterize it in the, previously overlooked, symmetric phase of the model.
The decoherence induced on a single qubit by its interaction with the environment is studied. The environment is modelled as a scalar two-level boson system that can go through either first order or continuous excited state quantum phase transitions,
We examine how the presence of an excited state quantum phase transition manifests in the dynamics of a many-body system subject to a sudden quench. Focusing on the Lipkin-Meshkov-Glick model initialized in the ground state of the ferromagnetic phase
The quantum Kibble-Zurek mechanism (QKZM) predicts universal dynamical behavior in the vicinity of quantum phase transitions (QPTs). It is now well understood for one-dimensional quantum matter. Higher-dimensional systems, however, remain a challenge
Background: Composed systems have became of great interest in the framework of the ground state quantum phase transitions (QPTs) and many of their properties have been studied in detail. However, in these systems the study of the so called excited-st
We study the (2+1)-dimensional Dirac oscillator in the presence of an external uniform magnetic field ($B$). We show how the change of the strength of $B$ leads to the existence of a quantum phase transition in the chirality of the system. A critical