ترغب بنشر مسار تعليمي؟ اضغط هنا

Decoherence due to an excited state quantum phase transition in a two-level boson model

177   0   0.0 ( 0 )
 نشر من قبل Jose Enrique Garcia Ramos
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The decoherence induced on a single qubit by its interaction with the environment is studied. The environment is modelled as a scalar two-level boson system that can go through either first order or continuous excited state quantum phase transitions, depending on the values of the control parameters. A mean field method based on the Tamm-Damkoff approximation is worked out in order to understand the observed behaviour of the decoherence. Only the continuous excited state phase transition produces a noticeable effect in the decoherence of the qubit. This is maximal when the system-environment coupling brings the environment to the critical point for the continuous phase transition. In this situation, the decoherence factor (or the fidelity) goes to zero with a finite size scaling power law.



قيم البحث

اقرأ أيضاً

58 - H. Failache , P. Valente , G. Ban 2002
The explanation presented in [Taichenachev et al, Phys. Rev. A {bf 61}, 011802 (2000)] according to which the electromagnetically induced absorption (EIA) resonances observed in degenerate two level systems are due to coherence transfer from the exci ted to the ground state is experimentally tested in a Hanle type experiment observing the parametric resonance on the $% D1$ line of $^{87}$Rb. While EIA occurs in the $F=1to F^{prime}=2 $ transition in a cell containing only $Rb$ vapor, collisions with a buffer gas ($30 torr$ of $Ne$) cause the sign reversal of this resonance as a consequence of collisional decoherence of the excited state. A theoretical model in good qualitative agreement with the experimental results is presented.
We examine how the presence of an excited state quantum phase transition manifests in the dynamics of a many-body system subject to a sudden quench. Focusing on the Lipkin-Meshkov-Glick model initialized in the ground state of the ferromagnetic phase , we demonstrate that the work probability distribution displays non-Gaussian behavior for quenches in the vicinity of the excited state critical point. Furthermore, we show that the entropy of the diagonal ensemble is highly susceptible to critical regions, making it a robust and practical indicator of the associated spectral characteristics. We assess the role that symmetry breaking has on the ensuing dynamics, highlighting that its effect is only present for quenches beyond the critical point. Finally, we show that similar features persist when the system is initialized in an excited state and briefly explore the behavior for initial states in the paramagnetic phase.
Decoherence effects at finite temperature (T) are examined for two manifestly quantum systems: (i) Casimir forces between parallel plates that conduct along different directions, and (ii) a topological Aharonov-Bohm (AB) type force between fluxons in a superconductor. As we illustrate, standard path integral calculations suggest that thermal effects may remove the angular dependence of the Casimir force in case (i) with a decoherence time set by h/(k_{B} T) where h is Planks constant and k_{B} is the Boltzmann constant. This prediction may be tested. The effect in case (ii) is due a phase shift picked by unpaired electrons upon encircling an odd number of fluxons. In principle, this effect may lead to small modifications in Abrikosov lattices. While the AB forces exist at extremely low temperatures, we find that thermal decoherence may strongly suppress the topological force at experimentally pertinent finite temperatures. It is suggested that both cases (i) and (ii) (as well as other examples briefly sketched) are related to a quantum version of the fluctuation-dissipation theorem.
In most cases, excited state quantum phase transitions can be associated with the existence of critical points (local extrema or saddle points) in a systems classical limit energy functional. However, an excited-state quantum phase transition might a lso stem from the lowering of the asymptotic energy of the corresponding energy functional. One such example takes place in the 2D vibron model, once an anharmonic term in the form of a quadratic bosonic number operator is added to the Hamiltonian. The study of this case in the broken-symmetry phase was presented in Phys. Rev. A. 81 050101 (2010). In the present work, we delve further into the nature of this excited-state quantum phase transition and we characterize it in the, previously overlooked, symmetric phase of the model.
Decoherence induced by coupling a system with an environment may display universal features. Here we demostrate that when the coupling to the system drives a quantum phase transition in the environment, the temporal decay of quantum coherences in the system is Gaussian with a width independent of the system-environment coupling strength. The existence of this effect opens the way for a new type of quantum simulation algorithm, where a single qubit is used to detect a quantum phase transition. We discuss possible implementations of such algorithm and we relate our results to available data on universal decoherence in NMR echo experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا