ﻻ يوجد ملخص باللغة العربية
The Fisher market is one of the most fundamental models for resource allocation problems in economic theory, wherein agents spend a budget of currency to buy goods that maximize their utilities, while producers sell capacity constrained goods in exchange for currency. However, the consideration of only two types of constraints, i.e., budgets of individual buyers and capacities of goods, makes Fisher markets less amenable for resource allocation settings when agents have additional linear constraints, e.g., knapsack and proportionality constraints. In this work, we introduce a modified Fisher market, where each agent may have additional linear constraints and show that this modification to classical Fisher markets fundamentally alters the properties of the market equilibrium as well as the optimal allocations. These properties of the modified Fisher market prompt us to introduce a budget perturbed social optimization problem (BP-SOP) and set prices based on the dual variables of BP-SOPs capacity constraints. To compute the budget perturbations, we develop a fixed point iterative scheme and validate its convergence through numerical experiments. Since this fixed point iterative scheme involves solving a centralized problem at each step, we propose a new class of distributed algorithms to compute equilibrium prices. In particular, we develop an Alternating Direction Method of Multipliers (ADMM) algorithm with strong convergence guarantees for Fisher markets with homogeneous linear constraints as well as for classical Fisher markets. In this algorithm, the prices are updated based on the tatonnement process, with a step size that is completely independent of the utilities of individual agents. Thus, our mechanism, both theoretically and computationally, overcomes a fundamental limitation of classical Fisher markets, which only consider capacity and budget constraints.
We study the equilibrium computation problem in the Fisher market model with constrained piecewise linear concave (PLC) utilities. This general class captures many well-studied special cases, including markets with PLC utilities, markets with satiati
The Arrow-Debreu extension of the classic Hylland-Zeckhauser scheme for a one-sided matching market -- called ADHZ in this paper -- has natural applications but has instances which do not admit equilibria. By introducing approximation, we define the
In a crowdsourcing market, a requester is looking to form a team of workers to perform a complex task that requires a variety of skills. Candidate workers advertise their certified skills and bid prices for their participation. We design four incenti
This paper is an attempt to deal with the recent realization (Vazirani, Yannakakis 2021) that the Hylland-Zeckhauser mechanism, which has remained a classic in economics for one-sided matching markets, is likely to be highly intractable. HZ uses the
Aggregative games have many industrial applications, and computing an equilibrium in those games is challenging when the number of players is large. In the framework of atomic aggregative games with coupling constraints, we show that variational Nash