ﻻ يوجد ملخص باللغة العربية
This paper is an attempt to deal with the recent realization (Vazirani, Yannakakis 2021) that the Hylland-Zeckhauser mechanism, which has remained a classic in economics for one-sided matching markets, is likely to be highly intractable. HZ uses the power of a pricing mechanism, which has endowed it with nice game-theoretic properties. Hosseini and Vazirani (2021) define a rich collection of Nash-bargaining-based models for one-sided and two-sided matching markets, in both Fisher and Arrow-Debreu settings, together with implementations using available solvers, and very encouraging experimental results. This naturally raises the question of finding efficient combinatorial algorithms for these models. In this paper, we give efficient combinatorial algorithms based on the techniques of multiplicative weights update (MWU) and conditional gradient descent (CGD) for several one-sided and two-sided models defined in HV 2021. Additionally, we define for the first time a Nash-bargaining-based model for non-bipartite matching markets and solve it using CGD. Furthermore, in every case, we study not only the Fisher but also the Arrow-Debreu version; the latter is also called the exchange version. We give natural applications for each model studied. These models inherit the game-theoretic and computational properties of Nash bargaining. We also establish a deep connection between HZ and the Nash-bargaining-based models, thereby confirming that the alternative to HZ proposed in HV 2021 is a principled one.
The Arrow-Debreu extension of the classic Hylland-Zeckhauser scheme for a one-sided matching market -- called ADHZ in this paper -- has natural applications but has instances which do not admit equilibria. By introducing approximation, we define the
Two-sided matching platforms provide users with menus of match recommendations. To maximize the number of realized matches between the two sides (referred here as customers and suppliers), the platform must balance the inherent tension between recomm
We design novel mechanisms for welfare-maximization in two-sided markets. That is, there are buyers willing to purchase items and sellers holding items initially, both acting rationally and strategically in order to maximize utility. Our mechanisms a
In 1979, Hylland and Zeckhauser cite{hylland} gave a simple and general scheme for implementing a one-sided matching market using the power of a pricing mechanism. Their method has nice properties -- it is incentive compatible in the large and produc
This paper addresses the paucity of models of matching markets, both one-sided and two-sided, when utility functions of agents are cardinal. The classical Hylland-Zeckhauser scheme cite{hylland}, which is the most prominent such model in economics, c