ﻻ يوجد ملخص باللغة العربية
Methyl cyanide (CH3CN) and propyne (CH3CCH) are two molecules commonly used as gas thermometers for interstellar gas. They are detected in several astrophysical environments and in particular towards protostars. Using data of the low-mass protostar IRAS 16293-2422 obtained with the IRAM 30m single-dish telescope, we constrained the origin of these two molecules in the envelope of the source. The line shape comparison and the results of a radiative transfer analysis both indicate that the emission of CH3CN arises from a warmer and inner region of the envelope than the CH3CCH emission. We compare the observational results with the predictions of a gas-grain chemical model. Our model predicts a peak abundance of CH3CCH in the gas-phase in the outer part of the envelope, at around 2000 au from the central star, which is relatively close to the emission size derived from the observations. The predicted CH3CN abundance only rises at the radius where the grain mantle ices evaporate, with an abundance similar to the one derived from the observations.
The low mass protostar IRAS 16293$-$2422 is a well-known young stellar system that is observed in the L1689N molecular cloud in the constellation of Ophiuchus. In the interstellar medium and solar system bodies, water is a necessary species for the f
The protonated form of CO2, HOCO+, is assumed to be an indirect tracer of CO2 in the millimeter/submillimeter regime since CO2 lacks a permanent dipole moment. Here, we report the detection of two rotational emission lines (4 0,4-3 0,3) and (5 0,5-4
Isocyanic acid (HNCO), the most stable of the simplest molecules containing the four main elements essential for organic chemistry, has been observed in several astrophysical environments such as molecular clouds, star-forming regions, external galax
This paper was withdrawed from the ApJ after the comments from the referee, please be carefully.
(Abridged) With the SMA we have made high angular-resolution (~1 = 160 AU) observations of the protobinary system IRAS 16293-2422 in the J = 4-3 lines of HCN and HC^15N, and in the continuum at 354.5 GHz. The HCN (4-3) line was also observed using th