ﻻ يوجد ملخص باللغة العربية
The HDO/H2O ratio is a powerful diagnostic to understand the evolution of water from the first stages of star formation to the formation of planets and comets. Our aim is to determine precisely the abundance distribution of HDO towards the low-mass protostar IRAS16293-2422 and learn more about the water formation mechanisms by determining the HDO/H2O abundance ratio. A spectral survey of the source IRAS16293-2422 was carried out in the framework of the CHESS Herschel Key program with the HIFI instrument, allowing the detection of numerous HDO lines. Other transitions have been observed previously with ground-based telescopes. The spherical Monte Carlo radiative transfer code RATRAN was used to reproduce the observed line profiles of HDO by assuming an abundance jump. To determine the H2O abundance throughout the envelope, a similar study was made of the H2-18O observed lines, as the H2O main isotope lines are contaminated by the outflows. We derive an inner HDO abundance of 1.7e-7 and an outer HDO abundance of 8e-11. To reproduce the HDO absorption lines, it is necessary to add an absorbing layer in front of the envelope. It may correspond to a water-rich layer created by the photodesorption of the ices at the edges of the molecular cloud. The HDO/H2O ratio is ~1.4-5.8% in the hot corino whereas it is ~0.2-2.2% in the outer envelope. It is estimated at ~4.8% in the added absorbing layer. Although it is clearly higher than the cosmic D/H abundance, the HDO/H2O ratio remains lower than the D/H ratio derived for other deuterated molecules observed in the same source. The similarity of the ratios derived in the hot corino and in the added absorbing layer suggests that water formed before the gravitational collapse of the protostar, contrary to formaldehyde and methanol, which formed later once the CO molecules had depleted on the grains.
Although water is an essential and widespread molecule in star-forming regions, its chemical formation pathways are still not very well constrained. Observing the level of deuterium fractionation of OH, a radical involved in the water chemical networ
In the past decade, much progress has been made in characterising the processes leading to the enhanced deuterium fractionation observed in the ISM and in particular in the cold, dense parts of star forming regions such as protostellar envelopes. Ver
The low mass protostar IRAS 16293$-$2422 is a well-known young stellar system that is observed in the L1689N molecular cloud in the constellation of Ophiuchus. In the interstellar medium and solar system bodies, water is a necessary species for the f
IRAS 16293-2422 is a well studied low-mass protostar characterized by a strong level of deuterium fractionation. In the line of sight of the protostellar envelope, an additional absorption layer, rich in singly and doubly deuterated water has been di
Cyanopolyynes are chains of carbon atoms with an atom of hydrogen and a CN group on either side. They are detected almost everywhere in the ISM, as well as in comets. In the past, they have been used to constrain the age of some molecular clouds, sin