ﻻ يوجد ملخص باللغة العربية
The release of GENIE v3.0.0 was a major milestone in the long history of the GENIE project, delivering several alternative comprehensive neutrino interaction models, improved charged-lepton scattering simulations, a range of beyond the Standard Model simulation capabilities, improved experimental interfaces, expanded core framework capabilities, and advanced new frameworks for the global analysis of neutrino scattering data and tuning of neutrino interaction models. Steady progress continued following the release of GENIE v3.0.0. New tools and a large number of new physics models, comprehensive model configurations, and tunes have been made publicly available and planned for release in v3.2.0. This article highlights some of the most recent technical and physics developments in the GENIE v3 series.
The GENIE neutrino Monte Carlo describes neutrino-induced hadronization with an effective model, known as AGKY, which is interfaced with PYTHIA at high invariant mass. Only the low-mass AGKY model parameters were extracted from hadronic shower data f
The ARGO-YBJ experiment has been in stable data taking for 5 years at the YangBaJing Cosmic Ray Observatory (Tibet, P.R. China, 4300 m a.s.l., 606 g/cm^2). With a duty-cycle greater than 86% the detector collected about 5 X 10^{11} events in a wide e
Highlights from recent computations in lattice QCD involving baryons are presented. Calculations of the proton mass and spin decompositions are discussed, a percent level determination of the nucleon axial coupling is described, and determinations of
GENIE is a neutrino Monte Carlo event generator that simulates the primary interaction of a neutrino with a nuclear target, along with the subsequent propagation of the reaction products through the nuclear medium. It additionally contains libraries
Models that produce a flux of semi-relativistic or relativistic boosted dark matter at large neutrino detectors are well-motivated extensions beyond the minimal weakly interacting massive particle (WIMP) paradigm. Current and upcoming liquid argon ti