ترغب بنشر مسار تعليمي؟ اضغط هنا

GENIE Production Release 2.10.0

77   0   0.0 ( 0 )
 نشر من قبل Constantinos Andreopoulos
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

GENIE is a neutrino Monte Carlo event generator that simulates the primary interaction of a neutrino with a nuclear target, along with the subsequent propagation of the reaction products through the nuclear medium. It additionally contains libraries for fully-featured detector geometries and for managing various types of neutrino flux. This note details recent updates to GENIE, in particular changes introduced into the newest production release, version 2.10.0.

قيم البحث

اقرأ أيضاً

The release of GENIE v3.0.0 was a major milestone in the long history of the GENIE project, delivering several alternative comprehensive neutrino interaction models, improved charged-lepton scattering simulations, a range of beyond the Standard Model simulation capabilities, improved experimental interfaces, expanded core framework capabilities, and advanced new frameworks for the global analysis of neutrino scattering data and tuning of neutrino interaction models. Steady progress continued following the release of GENIE v3.0.0. New tools and a large number of new physics models, comprehensive model configurations, and tunes have been made publicly available and planned for release in v3.2.0. This article highlights some of the most recent technical and physics developments in the GENIE v3 series.
The GENIE neutrino Monte Carlo describes neutrino-induced hadronization with an effective model, known as AGKY, which is interfaced with PYTHIA at high invariant mass. Only the low-mass AGKY model parameters were extracted from hadronic shower data f rom the FNAL 15 ft and BEBC experiments. In this paper, the first hadronization tune on averaged charged multiplicity data from deuterium and hydrogen bubble chamber experiments is presented, with a complete estimation of parameter uncertainties. A partial tune on deuterium data only highlights the tensions between hydrogen and deuterium datasets.
Faced with unresolved tensions between neutrino interaction measurements at few-GeV neutrino energies, current experiments are forced to accept large systematic uncertainties to cover discrepancies between their data and model predictions. In this pa per, the widely used pion production model in GENIE is compared to four MINERvA charged current pion production measurements using NUISANCE. Tunings, ie, adjustments of model parameters, to help match GENIE to MINERvA and older bubble chamber data are presented here. We find that scattering off nuclear targets as measured in MINERvA is not in good agreement with scattering off nucleon (hydrogen or deuterium) targets in the bubble chamber data. An additional ad hoc correction for the low-$Q^2$ region, where collective effects are expected to be large, is also presented. While these tunings and corrections improve the agreement of GENIE with the data, the modeling is imperfect. The development of these tunings within the NUISANCE frameworkallows for straightforward extensions to other neutrino event generators and models, and allows omitting and including new data sets as they become available.
86 - Joshua Berger 2018
Models that produce a flux of semi-relativistic or relativistic boosted dark matter at large neutrino detectors are well-motivated extensions beyond the minimal weakly interacting massive particle (WIMP) paradigm. Current and upcoming liquid argon ti me projection chamber (LArTPC) based detectors will have improved sensitivity to such models, but also require improved theoretical modeling to better understand their signals and optimize their analyses. I present the first full Monte Carlo tool for boosted dark matter interacting with nuclei in the energy regime accessible to LArTPC detectors, including the Deep Underground Neutrino Experiment (DUNE). The code uses the nuclear and strong physics modeling of the GENIE neutrino Monte Carlo event generator with particle physics modeling for dark matter. The code will be available in GENIE v3. In addition, I present a code for generating a GENIE-compatible flux of boosted dark matter coming from the Sun that is released independently.
Precision neutrino oscillation experiments of the future---of which DUNE is a prime example---require reliable event generator tools. The 1--4 GeV energy regime, in which DUNE will operate, is marked by the transition from the low-energy nuclear phys ics domain to that of perturbative QCD, resulting in rich and highly complex physics. Given this complexity, it is important to establish a validation procedure capable of disentangling the physical processes and testing each of them individually. Here, we demonstrate the utility of this approach by benchmarking the GENIE generator, currently used by all Fermilab-based experiments, against a broad set of inclusive electron-scattering data. This comparison takes advantage of the fact that, while electron-nucleus and neutrino-nucleus processes share a lot of common physics, electron scattering gives one access to precisely known beam energies and scattering kinematics. Exploring the kinematic parameter range relevant to DUNE in this manner, we observe patterns of large discrepancies between the generator and data. These discrepancies are most prominent in the pion-producing regimes and are present not only in medium-sized nuclei, including argon, but also in deuterium and hydrogen targets, indicating mismodeled hadronic physics. Several directions for possible improvement are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا