ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast evaluation of some p-adic transcendental functions

157   0   0.0 ( 0 )
 نشر من قبل Xavier Caruso
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Xavier Caruso




اسأل ChatGPT حول البحث

We design algorithms for computing values of many p-adic elementary and special functions, including logarithms, exponentials, polylogarithms, and hypergeometric functions. All our algorithms feature a quasi-linear complexity with respect to the target precision and most of them are based on an adaptation to the-adic setting of the binary splitting and bit-burst strategies.

قيم البحث

اقرأ أيضاً

We study $p$-adic multiresolution analyses (MRAs). A complete characterisation of test functions generating a MRA (scaling functions) is given. We prove that only 1-periodic test functions may be taken as orthogonal scaling functions and that all suc h scaling functions generate Haar MRA. We also suggest a method of constructing sets of wavelet functions and prove that any set of wavelet functions generates a $p$-adic wavelet frame.
We develop a theory of log adic spaces by combining the theories of adic spaces and log schemes, and study the Kummer etale and pro-Kummer etale topology for such spaces. We also establish the primitive comparison theorem in this context, and deduce from it some related cohomological finiteness or vanishing results.
We present a non-commutative algorithm for the multiplication of a 2 x 2 block-matrix by its adjoint, defined by a matrix ring anti-homomorphism. This algorithm uses 5 block products (3 recursive calls and 2 general products)over C or in positive cha racteristic. The resulting algorithm for arbitrary dimensions is a reduction of multiplication of a matrix by its adjoint to general matrix product, improving by a constant factor previously known reductions. We prove also that there is no algorithm derived from bilinear forms using only four products and the adjoint of one of them. Second we give novel dedicated algorithms for the complex field and the quaternions to alternatively compute the multiplication taking advantage of the structure of the matrix-polynomial arithmetic involved. We then analyze the respective ranges of predominance of the two strategies. Finally we propose schedules with low memory footprint that support a fast and memory efficient practical implementation over a prime field.
Let $Pin Bbb Q_p[x,y]$, $sin Bbb C$ with sufficiently large real part, and consider the integral operator $ (A_{P,s}f)(y):=frac{1}{1-p^{-1}}int_{Bbb Z_p}|P(x,y)|^sf(x) |dx| $ on $L^2(Bbb Z_p)$. We show that if $P$ is homogeneous then for each charact er $chi$ of $Bbb Z_p^times$ the characteristic function $det(1-uA_{P,s,chi})$ of the restriction $A_{P,s,chi}$ of $A_{P,s}$ to the eigenspace $L^2(Bbb Z_p)_chi$ is the $q$-Wronskian of a set of solutions of a (possibly confluent) $q$-hypergeometric equation. In particular, the nonzero eigenvalues of $A_{P,s,chi}$ are the reciprocals of the zeros of such $q$-Wronskian.
159 - Lei Fu , Peigen Li , Daqing Wan 2018
To a torus action on a complex vector space, Gelfand, Kapranov and Zelevinsky introduce a system of differential equations, which are now called the GKZ hypergeometric system. Its solutions are GKZ hypergeometric functions. We study the $p$-adic coun terpart of the GKZ hypergeometric system. The $p$-adic GKZ hypergeometric complex is a twisted relative de Rham complex of over-convergent differential forms with logarithmic poles. It is an over-holonomic object in the derived category of arithmetic $mathcal D$-modules with Frobenius structures. Traces of Frobenius on fibers at Techmuller points of the GKZ hypergeometric complex define the hypergeometric function over the finite field introduced by Gelfand and Graev. Over the non-degenerate locus, the GKZ hypergeometric complex defines an over-convergent $F$-isocrystal. It is the crystalline companion of the $ell$-adic GKZ hypergeometric sheaf that we constructed before. Our method is a combination of Dworks theory and the theory of arithmetic $mathcal D$-modules of Berthelot.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا