We study $p$-adic multiresolution analyses (MRAs). A complete characterisation of test functions generating a MRA (scaling functions) is given. We prove that only 1-periodic test functions may be taken as orthogonal scaling functions and that all such scaling functions generate Haar MRA. We also suggest a method of constructing sets of wavelet functions and prove that any set of wavelet functions generates a $p$-adic wavelet frame.
We study $p$-adic multiresolution analyses (MRAs). A complete characterisation of test functions generating MRAs (scaling functions) is given. We prove that only 1-periodic test functions may be taken as orthogonal scaling functions. We also suggest
a method for the construction of wavelet functions and prove that any wavelet function generates a $p$-adic wavelet frame.
A Borel probability measure $mu$ on a locally compact group is called a spectral measure if there exists a subset of continuous group characters which forms an orthogonal basis of the Hilbert space $L^2(mu)$. In this paper, we characterize all spectr
al measures in the field $mathbb{Q}_p$ of $p$-adic numbers.
To a torus action on a complex vector space, Gelfand, Kapranov and Zelevinsky introduce a system of differential equations, which are now called the GKZ hypergeometric system. Its solutions are GKZ hypergeometric functions. We study the $p$-adic coun
terpart of the GKZ hypergeometric system. The $p$-adic GKZ hypergeometric complex is a twisted relative de Rham complex of over-convergent differential forms with logarithmic poles. It is an over-holonomic object in the derived category of arithmetic $mathcal D$-modules with Frobenius structures. Traces of Frobenius on fibers at Techmuller points of the GKZ hypergeometric complex define the hypergeometric function over the finite field introduced by Gelfand and Graev. Over the non-degenerate locus, the GKZ hypergeometric complex defines an over-convergent $F$-isocrystal. It is the crystalline companion of the $ell$-adic GKZ hypergeometric sheaf that we constructed before. Our method is a combination of Dworks theory and the theory of arithmetic $mathcal D$-modules of Berthelot.
We design algorithms for computing values of many p-adic elementary and special functions, including logarithms, exponentials, polylogarithms, and hypergeometric functions. All our algorithms feature a quasi-linear complexity with respect to the targ
et precision and most of them are based on an adaptation to the-adic setting of the binary splitting and bit-burst strategies.
We formulate a conjectural p-adic analogue of Borels theorem relating regulators for higher K-groups of number fields to special values of the corresponding zeta-functions, using syntomic regulators and p-adic L-functions. We also formulate a corresp
onding conjecture for Artin motives, and state a conjecture about the precise relation between the p-adic and classical situations. Parts of he conjectures are proved when the number field (or Artin motive) is Abelian over the rationals, and all conjectures are verified numerically in some other cases.