ﻻ يوجد ملخص باللغة العربية
With the development of the 5G and Internet of Things, amounts of wireless devices need to share the limited spectrum resources. Dynamic spectrum access (DSA) is a promising paradigm to remedy the problem of inefficient spectrum utilization brought upon by the historical command-and-control approach to spectrum allocation. In this paper, we investigate the distributed DSA problem for multi-user in a typical multi-channel cognitive radio network. The problem is formulated as a decentralized partially observable Markov decision process (Dec-POMDP), and we proposed a centralized off-line training and distributed on-line execution framework based on cooperative multi-agent reinforcement learning (MARL). We employ the deep recurrent Q-network (DRQN) to address the partial observability of the state for each cognitive user. The ultimate goal is to learn a cooperative strategy which maximizes the sum throughput of cognitive radio network in distributed fashion without coordination information exchange between cognitive users. Finally, we validate the proposed algorithm in various settings through extensive experiments. From the simulation results, we can observe that the proposed algorithm can converge fast and achieve almost the optimal performance.
Designing clustered unmanned aerial vehicle (UAV) communication networks based on cognitive radio (CR) and reinforcement learning can significantly improve the intelligence level of clustered UAV communication networks and the robustness of the syste
In this paper, we compare the performances of cooperative and distributed spectrum sensing in wireless sensor networks. After introducing the basic problem, we describe two strategies: 1) a cooperative sensing strategy, which takes advantage of coope
In this paper, a novel spectrum association approach for cognitive radio networks (CRNs) is proposed. Based on a measure of both inference and confidence as well as on a measure of quality-of-service, the association between secondary users (SUs) in
Cooperative multi-agent reinforcement learning often requires decentralised policies, which severely limit the agents ability to coordinate their behaviour. In this paper, we show that common knowledge between agents allows for complex decentralised
Matrix games like Prisoners Dilemma have guided research on social dilemmas for decades. However, they necessarily treat the choice to cooperate or defect as an atomic action. In real-world social dilemmas these choices are temporally extended. Coope