ترغب بنشر مسار تعليمي؟ اضغط هنا

Federated CycleGAN for Privacy-Preserving Image-to-Image Translation

257   0   0.0 ( 0 )
 نشر من قبل Jong Chul Ye
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Unsupervised image-to-image translation methods such as CycleGAN learn to convert images from one domain to another using unpaired training data sets from different domains. Unfortunately, these approaches still require centrally collected unpaired records, potentially violating privacy and security issues. Although the recent federated learning (FL) allows a neural network to be trained without data exchange, the basic assumption of the FL is that all clients have their own training data from a similar domain, which is different from our image-to-image translation scenario in which each client has images from its unique domain and the goal is to learn image translation between different domains without accessing the target domain data. To address this, here we propose a novel federated CycleGAN architecture that can learn image translation in an unsupervised manner while maintaining the data privacy. Specifically, our approach arises from a novel observation that CycleGAN loss can be decomposed into the sum of client specific local objectives that can be evaluated using only their data. This local objective decomposition allows multiple clients to participate in federated CycleGAN training without sacrificing performance. Furthermore, our method employs novel switchable generator and discriminator architecture using Adaptive Instance Normalization (AdaIN) that significantly reduces the band-width requirement of the federated learning. Our experimental results on various unsupervised image translation tasks show that our federated CycleGAN provides comparable performance compared to the non-federated counterpart.



قيم البحث

اقرأ أيضاً

For unpaired image-to-image translation tasks, GAN-based approaches are susceptible to semantic flipping, i.e., contents are not preserved consistently. We argue that this is due to (1) the difference in semantic statistics between source and target domains and (2) the learned generators being non-robust. In this paper, we proposed a novel approach, Lipschitz regularized CycleGAN, for improving semantic robustness and thus alleviating the semantic flipping issue. During training, we add a gradient penalty loss to the generators, which encourages semantically consistent transformations. We evaluate our approach on multiple common datasets and compare with several existing GAN-based methods. Both quantitative and visual results suggest the effectiveness and advantage of our approach in producing robust transformations with fewer semantic flipping.
In image-to-image translation, each patch in the output should reflect the content of the corresponding patch in the input, independent of domain. We propose a straightforward method for doing so -- maximizing mutual information between the two, usin g a framework based on contrastive learning. The method encourages two elements (corresponding patches) to map to a similar point in a learned feature space, relative to other elements (other patches) in the dataset, referred to as negatives. We explore several critical design choices for making contrastive learning effective in the image synthesis setting. Notably, we use a multilayer, patch-based approach, rather than operate on entire images. Furthermore, we draw negatives from within the input image itself, rather than from the rest of the dataset. We demonstrate that our framework enables one-sided translation in the unpaired image-to-image translation setting, while improving quality and reducing training time. In addition, our method can even be extended to the training setting where each domain is only a single image.
Every recent image-to-image translation model inherently requires either image-level (i.e. input-output pairs) or set-level (i.e. domain labels) supervision. However, even set-level supervision can be a severe bottleneck for data collection in practi ce. In this paper, we tackle image-to-image translation in a fully unsupervised setting, i.e., neither paired images nor domain labels. To this end, we propose a truly unsupervised image-to-image translation model (TUNIT) that simultaneously learns to separate image domains and translates input images into the estimated domains. Experimental results show that our model achieves comparable or even better performance than the set-level supervised model trained with full labels, generalizes well on various datasets, and is robust against the choice of hyperparameters (e.g. the preset number of pseudo domains). Furthermore, TUNIT can be easily extended to semi-supervised learning with a few labeled data.
117 - Jiahuan Luo , Xueyang Wu , Yun Luo 2019
Federated learning is a new machine learning paradigm which allows data parties to build machine learning models collaboratively while keeping their data secure and private. While research efforts on federated learning have been growing tremendously in the past two years, most existing works still depend on pre-existing public datasets and artificial partitions to simulate data federations due to the lack of high-quality labeled data generated from real-world edge applications. Consequently, advances on benchmark and model evaluations for federated learning have been lagging behind. In this paper, we introduce a real-world image dataset. The dataset contains more than 900 images generated from 26 street cameras and 7 object categories annotated with detailed bounding box. The data distribution is non-IID and unbalanced, reflecting the characteristic real-world federated learning scenarios. Based on this dataset, we implemented two mainstream object detection algorithms (YOLO and Faster R-CNN) and provided an extensive benchmark on model performance, efficiency, and communication in a federated learning setting. Both the dataset and algorithms are made publicly available.
We introduce a simple and versatile framework for image-to-image translation. We unearth the importance of normalization layers, and provide a carefully designed two-stream generative model with newly proposed feature transformations in a coarse-to-f ine fashion. This allows multi-scale semantic structure information and style representation to be effectively captured and fused by the network, permitting our method to scale to various tasks in both unsupervised and supervised settings. No additional constraints (e.g., cycle consistency) are needed, contributing to a very clean and simple method. Multi-modal image synthesis with arbitrary style control is made possible. A systematic study compares the proposed method with several state-of-the-art task-specific baselines, verifying its effectiveness in both perceptual quality and quantitative evaluations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا