ترغب بنشر مسار تعليمي؟ اضغط هنا

TSIT: A Simple and Versatile Framework for Image-to-Image Translation

164   0   0.0 ( 0 )
 نشر من قبل Liming Jiang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a simple and versatile framework for image-to-image translation. We unearth the importance of normalization layers, and provide a carefully designed two-stream generative model with newly proposed feature transformations in a coarse-to-fine fashion. This allows multi-scale semantic structure information and style representation to be effectively captured and fused by the network, permitting our method to scale to various tasks in both unsupervised and supervised settings. No additional constraints (e.g., cycle consistency) are needed, contributing to a very clean and simple method. Multi-modal image synthesis with arbitrary style control is made possible. A systematic study compares the proposed method with several state-of-the-art task-specific baselines, verifying its effectiveness in both perceptual quality and quantitative evaluations.



قيم البحث

اقرأ أيضاً

An unsupervised image-to-image translation (UI2I) task deals with learning a mapping between two domains without paired images. While existing UI2I methods usually require numerous unpaired images from different domains for training, there are many s cenarios where training data is quite limited. In this paper, we argue that even if each domain contains a single image, UI2I can still be achieved. To this end, we propose TuiGAN, a generative model that is trained on only two unpaired images and amounts to one-shot unsupervised learning. With TuiGAN, an image is translated in a coarse-to-fine manner where the generated image is gradually refined from global structures to local details. We conduct extensive experiments to verify that our versatile method can outperform strong baselines on a wide variety of UI2I tasks. Moreover, TuiGAN is capable of achieving comparable performance with the state-of-the-art UI2I models trained with sufficient data.
Multimodal image-to-image translation (I2IT) aims to learn a conditional distribution that explores multiple possible images in the target domain given an input image in the source domain. Conditional generative adversarial networks (cGANs) are often adopted for modeling such a conditional distribution. However, cGANs are prone to ignore the latent code and learn a unimodal distribution in conditional image synthesis, which is also known as the mode collapse issue of GANs. To solve the problem, we propose a simple yet effective method that explicitly estimates and maximizes the mutual information between the latent code and the output image in cGANs by using a deep mutual information neural estimator in this paper. Maximizing the mutual information strengthens the statistical dependency between the latent code and the output image, which prevents the generator from ignoring the latent code and encourages cGANs to fully utilize the latent code for synthesizing diverse results. Our method not only provides a new perspective from information theory to improve diversity for I2IT but also achieves disentanglement between the source domain content and the target domain style for free.
We propose an interactive GAN-based sketch-to-image translation method that helps novice users create images of simple objects. As the user starts to draw a sketch of a desired object type, the network interactively recommends plausible completions, and shows a corresponding synthesized image to the user. This enables a feedback loop, where the user can edit their sketch based on the networks recommendations, visualizing both the completed shape and final rendered image while they draw. In order to use a single trained model across a wide array of object classes, we introduce a gating-based approach for class conditioning, which allows us to generate distinct classes without feature mixing, from a single generator network. Video available at our website: https://arnabgho.github.io/iSketchNFill/.
In image-to-image translation, each patch in the output should reflect the content of the corresponding patch in the input, independent of domain. We propose a straightforward method for doing so -- maximizing mutual information between the two, usin g a framework based on contrastive learning. The method encourages two elements (corresponding patches) to map to a similar point in a learned feature space, relative to other elements (other patches) in the dataset, referred to as negatives. We explore several critical design choices for making contrastive learning effective in the image synthesis setting. Notably, we use a multilayer, patch-based approach, rather than operate on entire images. Furthermore, we draw negatives from within the input image itself, rather than from the rest of the dataset. We demonstrate that our framework enables one-sided translation in the unpaired image-to-image translation setting, while improving quality and reducing training time. In addition, our method can even be extended to the training setting where each domain is only a single image.
It is well known that humans can learn and recognize objects effectively from several limited image samples. However, learning from just a few images is still a tremendous challenge for existing main-stream deep neural networks. Inspired by analogica l reasoning in the human mind, a feasible strategy is to translate the abundant images of a rich source domain to enrich the relevant yet different target domain with insufficient image data. To achieve this goal, we propose a novel, effective multi-adversarial framework (MA) based on part-global learning, which accomplishes one-shot cross-domain image-to-image translation. In specific, we first devise a part-global adversarial training scheme to provide an efficient way for feature extraction and prevent discriminators being over-fitted. Then, a multi-adversarial mechanism is employed to enhance the image-to-image translation ability to unearth the high-level semantic representation. Moreover, a balanced adversarial loss function is presented, which aims to balance the training data and stabilize the training process. Extensive experiments demonstrate that the proposed approach can obtain impressive results on various datasets between two extremely imbalanced image domains and outperform state-of-the-art methods on one-shot image-to-image translation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا