ﻻ يوجد ملخص باللغة العربية
In two and three spatial dimensions, the transverse response experienced by a charged particle on a lattice in a uniform magnetic field is proportional to a topological invariant, the first Chern number, characterizing the energy bands of the underlying Hofstadter Hamiltonian. In four dimensions, the transverse response is also quantized, and controlled by the second Chern number. These remarkable features solely arise from the magnetic translational symmetry. Here we show that the symmetries of the two-, three- and four-dimensional Hofstadter Hamiltonians may be encrypted in optical diffraction gratings, such that simple photonic experiments allow one to extract the first and the second Chern numbers of the whole energy spectra. This result is particularly remarkable in three and four dimensions, where complete topological characterizations have not yet been achieved experimentally. Side-by-side to the theoretical analysis, in this work we present the experimental study of optical gratings analogues of the two- and three-dimensional Hofstadter models.
Topological properties of crystals and quasicrystals is a subject of recent and growing interest. This Letter reports an experiment where, for certain quasicrystals, these properties can be directly retrieved from diffraction. We directly observe, us
Using the Sierpinski carpet and gasket, we investigate whether fractal lattices embedded in two-dimensional space can support topological phases when subjected to a homogeneous external magnetic field. To this end, we study the localization property
We investigate the properties of a two-dimensional quasicrystal in the presence of a uniform magnetic field. In this configuration, the density of states (DOS) displays a Hofstadter butterfly-like structure when it is represented as a function of the
We study the relation between the global topology of the Hofstadter butterfly of a multiband insulator and the topological invariants of the underlying Hamiltonian. The global topology of the butterfly, i.e., the displacement of the energy gaps as th
We introduce a grating assisted tunneling scheme for tunable synthetic magnetic fields in photonic lattices, which can be implemented at optical frequencies in optically induced one- and two-dimensional dielectric photonic lattices. We demonstrate a