ﻻ يوجد ملخص باللغة العربية
We study the relation between the global topology of the Hofstadter butterfly of a multiband insulator and the topological invariants of the underlying Hamiltonian. The global topology of the butterfly, i.e., the displacement of the energy gaps as the magnetic field is varied by one flux quantum, is determined by the spectral flow of energy eigenstates crossing gaps as the field is tuned. We find that for each gap this spectral flow is equal to the topological invariant of the gap, i.e., the net number of edge modes traversing the gap. For periodically driven systems, our results apply to the spectrum of quasienergies. In this case, the spectral flow of the sum of all the quasienergies gives directly the Rudner invariant.
We investigate theoretically the spectrum of a graphene-like sample (honeycomb lattice) subjected to a perpendicular magnetic field and irradiated by circularly polarized light. This system is studied using the Floquet formalism, and the resulting Ho
In this work, we study the topological phases of the dimerized square lattice in the presence of an external magnetic field. The dimerization pattern in the lattices hopping amplitudes can induce a series of bulk energy gap openings in the Hofstadter
Using the Sierpinski carpet and gasket, we investigate whether fractal lattices embedded in two-dimensional space can support topological phases when subjected to a homogeneous external magnetic field. To this end, we study the localization property
The energy spectrum of massless Dirac fermions in graphene under two dimensional periodic magnetic modulation having square lattice symmetry is calculated. We show that the translation symmetry of the problem is similar to that of the Hofstadter or T
We develop a generic $mathbf{k}cdot mathbf{p}$ open momentum space method for calculating the Hofstadter butterfly of both continuum (Moire) models and tight-binding models, where the quasimomentum is directly substituted by the Landau level (LL) ope