ﻻ يوجد ملخص باللغة العربية
In a recent paper (Scheme of the arrangement for attack on the protocol BB84, Optik 127(18):7083-7087, Sept 2016), a protocol was proposed for using weak measurement to attack BB84. This claimed the four basis states typically used could be perfectly discriminated, and so an interceptor could obtain all information carried. We show this attack fails when considered using standard quantum mechanics, as expected - such ``single-shot quantum state discrimination is impossible, even using weak measurement.
We prove the security of the 1984 protocol of Bennett and Brassard (BB84) for quantum key distribution. We first give a key distribution protocol based on entanglement purification, which can be proven secure using methods from Lo and Chaus proof of
In reply to Vaidmans Comment [arXiv:1304.6689], we show that his claim that our Protocol for Direct Counterfactual Quantum Communication [PRL 110, 170502 (2013), arXiv:1206.2042] is counterfactual only for one type of information bit is wrong.
We demonstrate an attack on a clock synchronization protocol that attempts to detect tampering of the synchronization channel using polarization-entangled photon pairs. The protocol relies on a symmetrical channel, where propagation delays do not dep
We develop an improvement to the weak laser pulse BB84 scheme for quantum key distribution, which utilizes entanglement to improve the security of the scheme and enhance its resilience to the photon-number-splitting attack. This protocol relies on th
In [J.S. Shaari, M. Lucamarini, M.R.B. Wahiddin, Phys. Lett. A 358 (2006) 85-90] the deterministic six states protocol (6DP) for quantum communication has been developed. This protocol is based on three mutually unbiased bases and four encoding opera