ﻻ يوجد ملخص باللغة العربية
We demonstrate an attack on a clock synchronization protocol that attempts to detect tampering of the synchronization channel using polarization-entangled photon pairs. The protocol relies on a symmetrical channel, where propagation delays do not depend on propagation direction, for correctly deducing the offset between clocks -- a condition that could be manipulated with optical circulators, which rely on static magnetic fields to break the reciprocity of propagating electromagnetic fields. Despite the polarization transformation induced within a set of circulators, our attack creates an error in time synchronization while successfully evading detection.
Event synchronisation is a ubiquitous task, with applications ranging from 5G technology to industrial automation and smart power grids. The emergence of quantum communication networks will further increase the demands for synchronisation in optical
The quantum clock synchronization (QCS) is to measure the time difference among the spatially separated clocks with the principle of quantum mechanics. The first QCS algorithm proposed by Chuang and Jozsa is merely based on two parties, which is furt
In a recent paper (Scheme of the arrangement for attack on the protocol BB84, Optik 127(18):7083-7087, Sept 2016), a protocol was proposed for using weak measurement to attack BB84. This claimed the four basis states typically used could be perfectly
In this paper, we propose a panorama stitching algorithm based on asymmetric bidirectional optical flow. This algorithm expects multiple photos captured by fisheye lens cameras as input, and then, through the proposed algorithm, these photos can be m
State-of-the-art atomic clocks are based on the precise detection of the energy difference between two atomic levels, measured as a quantum phase accumulated in a given time interval. Optical-lattice clocks (OLCs) now operate at or near the standard