ﻻ يوجد ملخص باللغة العربية
We develop an improvement to the weak laser pulse BB84 scheme for quantum key distribution, which utilizes entanglement to improve the security of the scheme and enhance its resilience to the photon-number-splitting attack. This protocol relies on the non-commutation of photon phase and number to detect an eavesdropper performing quantum non-demolition measurement on number. The potential advantages and disadvantages of this scheme are compared to the coherent decoy state protocol.
The existing decoy-state quantum key distribution (QKD) beating photon-number-splitting (PNS) attack provides a more accurate method to estimate secure key rate, while it still considers that only single-photon pulses can generate secure keys in any
We prove the security of the 1984 protocol of Bennett and Brassard (BB84) for quantum key distribution. We first give a key distribution protocol based on entanglement purification, which can be proven secure using methods from Lo and Chaus proof of
Two time-reversal quantum key distribution (QKD) schemes are the quantum entanglement based device-independent (DI)-QKD and measurement-device-independent (MDI)-QKD. The recently proposed twin field (TF)-QKD, also known as phase-matching (PM)-QKD, ha
In this paper we present the quantum control attack on quantum key distribution systems. The cornerstone of the attack is that Eve can use unitary (polar) decomposition of her positive-operator valued measure elements, which allows her to realize the
A commonly held tenet is that lasers well above threshold emit photons in a coherent state, which follow a Poissonian statistics when measured in photon number. This feature is often exploited to build quantum-based random number generators or to der