ﻻ يوجد ملخص باللغة العربية
A model computational quantum thermodynamic network is constructed with two variable temperature baths coupled by a linker system, with an asymmetry in the coupling of the linker to the two baths. It is found in computational simulations that the baths come to thermal equilibrium at different bath energies and temperatures. In a sense, heat is observed to flow from cold to hot. A description is given in which a recently defined quantum entropy $S^Q_{univ}$ for a pure state universe continues to increase after passing through the classical equilibrium point of equal temperatures, reaching a maximum at the asymmetric equilibrium. Thus, a second law account $Delta S^Q_{univ} ge 0$ holds for the asymmetric quantum process. In contrast, a von Neumann entropy description fails to uphold the entropy law, with a maximum near when the two temperatures are equal, then a decrease $Delta S^{vN} < 0$ on the way to the asymmetric equilibrium.
For a thermodynamic system obeying both the equipartition theorem in high temperature and the third law in low temperature, the curve showing relationship between the specific heat and the temperature has two common behaviors: it terminates at zero w
In systems described by the scattering theory, there is an upper bound, lower than Carnot, on the efficiency of steady-state heat to work conversion at a given output power. We show that interacting systems can overcome such bound and saturate, in th
The thermodynamic uncertainty relation, originally derived for classical Markov-jump processes, provides a trade-off relation between precision and dissipation, deepening our understanding of the performance of quantum thermal machines. Here, we exam
There is a renewed interest in the derivation of statistical mechanics from the dynamics of closed quantum systems. A central part of this program is to understand how far-from-equilibrium closed quantum system can behave as if relaxing to a stable e
We study quench dynamics and equilibration in one-dimensional quantum hydrodynamics, which provides effective descriptions of the density and velocity fields in gapless quantum gases. We show that the information content of the large time steady stat