ﻻ يوجد ملخص باللغة العربية
For a thermodynamic system obeying both the equipartition theorem in high temperature and the third law in low temperature, the curve showing relationship between the specific heat and the temperature has two common behaviors: it terminates at zero when the temperature is zero Kelvin and converges to a constant as temperature is higher and higher. Since it is always possible to find the characteristic temperature $T_{C}$ to mark the excited temperature as the specific heat almost reaches the equipartition value, it is reasonable to find a temperature in low temperature interval, complementary to $T_{C}$. The present study reports a possibly universal existence of the such a temperature $vartheta$, defined by that at which the specific heat falls textit{fastest} along with decrease of the temperature. For the Debye model of solids, above the temperature $vartheta$ the Debyes law starts to fail.
A model computational quantum thermodynamic network is constructed with two variable temperature baths coupled by a linker system, with an asymmetry in the coupling of the linker to the two baths. It is found in computational simulations that the bat
The present work extends the well-known thermodynamic relation $C=beta ^{2}< delta {E^{2}}>$ for the canonical ensemble. We start from the general situation of the thermodynamic equilibrium between a large but finite system of interest and a generali
Fluctuation theorems are fundamental results in non-equilibrium thermodynamics. Considering the fluctuation theorem with respect to the entropy production and an observable, we derive a new thermodynamic uncertainty relation which also applies to non-cyclic and time-reversal non-symmetric protocols.
The aim of this paper is to determine lost works in a molecular engine and compare results with macro (classical) heat engines. Firstly, irreversible thermodynamics are reviewed for macro and molecular cycles. Secondly, irreversible thermodynamics ap
The time evolution of an extended quantum system can be theoretically described in terms of the Schwinger-Keldysh functional integral formalism, whose action conveniently encodes the information about the dynamics. We show here that the action of qua