ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermodynamic bound on heat to power conversion

120   0   0.0 ( 0 )
 نشر من قبل Giuliano Benenti
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In systems described by the scattering theory, there is an upper bound, lower than Carnot, on the efficiency of steady-state heat to work conversion at a given output power. We show that interacting systems can overcome such bound and saturate, in the thermodynamic limit, the much more favorable linear-response bound. This result is rooted in the possibility for interacting systems to achieve the Carnot efficiency at the thermodynamic limit without delta-energy filtering, so that large efficiencies can be obtained without greatly reducing power.

قيم البحث

اقرأ أيضاً

The paper discusses the natural emergence of directed motion in a dimer system due to a structural symmetry breaking. A generalised solution is obtained for the transport of such a system which is driven entirely by bath fluctuations. The result show s the existence of possibility of ratcheting driven by bath fluctuations. If this component of energy conversion driven by bath is taken into account the high efficiency of molecular motors as opposed to paradigmatic ratcheting models can probably be explained.
We consider the quality factor Q, which quantifies the trade-off between power, efficiency, and fluctuations in steady-state heat engines modeled by dynamical systems. We show that the nonlinear scattering theory, both in classical and quantum mechan ics, sets the bound Q=3/8 when approaching the Carnot efficiency. On the other hand, interacting, nonintegrable and momentum-conserving systems can achieve the value Q=1/2, which is the universal upper bound in linear response. This result shows that interactions are necessary to achieve the optimal performance of a steady-state heat engine.
Electrons/atoms can flow without dissipation at low temperature in superconductors/superfluids. The phenomenon known as superconductivity/superfluidity is one of the most important discoveries of modern physics, and is not only fundamentally importan t, but also essential for many real applications. An interesting question is: can we have a superconductor for heat current, in which energy can flow without dissipation? Here we show that heat superconductivity is indeed possible. We will show how the possibility of the heat superconductivity emerges in theory, and how the heat superconductor can be constructed using recently proposed time crystals. The underlying simple physics is also illustrated. If the possibility could be realized, it would not be difficult to speculate various potential applications, from energy tele-transportation to cooling of information devices.
The common saying, that information is power, takes a rigorous form in stochastic thermodynamics, where a quantitative equivalence between the two helps explain the paradox of Maxwells demon in its ability to reduce entropy. In the present paper, we build on earlier work on the interplay between the relative cost and benefits of information in producing work in cyclic operation of thermodynamic engines (by Sandberg etal. 2014). Specifically, we study the general case of overdamped particles in a time-varying potential (control action) in feedback that utilizes continuous measurements (nonlinear filtering) of a thermodynamic ensemble, to produce suitable adaptations of the second law of thermodynamics that involve information.
The aim of this paper is to determine lost works in a molecular engine and compare results with macro (classical) heat engines. Firstly, irreversible thermodynamics are reviewed for macro and molecular cycles. Secondly, irreversible thermodynamics ap proaches are applied for a quantum heat engine with -1/2 spin system. Finally, lost works are determined for considered system and results show that macro and molecular heat engines obey same limitations. Moreover, a quantum thermodynamic approach is suggested in order to explain the results previously obtained from an atomic viewpoint.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا