ﻻ يوجد ملخص باللغة العربية
In systems described by the scattering theory, there is an upper bound, lower than Carnot, on the efficiency of steady-state heat to work conversion at a given output power. We show that interacting systems can overcome such bound and saturate, in the thermodynamic limit, the much more favorable linear-response bound. This result is rooted in the possibility for interacting systems to achieve the Carnot efficiency at the thermodynamic limit without delta-energy filtering, so that large efficiencies can be obtained without greatly reducing power.
The paper discusses the natural emergence of directed motion in a dimer system due to a structural symmetry breaking. A generalised solution is obtained for the transport of such a system which is driven entirely by bath fluctuations. The result show
We consider the quality factor Q, which quantifies the trade-off between power, efficiency, and fluctuations in steady-state heat engines modeled by dynamical systems. We show that the nonlinear scattering theory, both in classical and quantum mechan
Electrons/atoms can flow without dissipation at low temperature in superconductors/superfluids. The phenomenon known as superconductivity/superfluidity is one of the most important discoveries of modern physics, and is not only fundamentally importan
The common saying, that information is power, takes a rigorous form in stochastic thermodynamics, where a quantitative equivalence between the two helps explain the paradox of Maxwells demon in its ability to reduce entropy. In the present paper, we
The aim of this paper is to determine lost works in a molecular engine and compare results with macro (classical) heat engines. Firstly, irreversible thermodynamics are reviewed for macro and molecular cycles. Secondly, irreversible thermodynamics ap