ﻻ يوجد ملخص باللغة العربية
This is a tutorial and survey paper on kernels, kernel methods, and related fields. We start with reviewing the history of kernels in functional analysis and machine learning. Then, Mercer kernel, Hilbert and Banach spaces, Reproducing Kernel Hilbert Space (RKHS), Mercers theorem and its proof, frequently used kernels, kernel construction from distance metric, important classes of kernels (including bounded, integrally positive definite, universal, stationary, and characteristic kernels), kernel centering and normalization, and eigenfunctions are explained in detail. Then, we introduce types of use of kernels in machine learning including kernel methods (such as kernel support vector machines), kernel learning by semi-definite programming, Hilbert-Schmidt independence criterion, maximum mean discrepancy, kernel mean embedding, and kernel dimensionality reduction. We also cover rank and factorization of kernel matrix as well as the approximation of eigenfunctions and kernels using the Nystr{o}m method. This paper can be useful for various fields of science including machine learning, dimensionality reduction, functional analysis in mathematics, and mathematical physics in quantum mechanics.
The Gaussian kernel plays a central role in machine learning, uncertainty quantification and scattered data approximation, but has received relatively little attention from a numerical analysis standpoint. The basic problem of finding an algorithm fo
We provide the first mathematically complete derivation of the Nystrom method for low-rank approximation of indefinite kernels and propose an efficient method for finding an approximate eigendecomposition of such kernel matrices. Building on this res
In this paper, we study the problem of early stopping for iterative learning algorithms in a reproducing kernel Hilbert space (RKHS) in the nonparametric regression framework. In particular, we work with the gradient descent and (iterative) kernel ri
The geometry of spaces with indefinite inner product, known also as Krein spaces, is a basic tool for developing Operator Theory therein. In the present paper we establish a link between this geometry and the algebraic theory of *-semigroups. It goes
We investigate the connections between sparse approximation methods for making kernel methods and Gaussian processes (GPs) scalable to massive data, focusing on the Nystrom method and the Sparse Variational Gaussian Processes (SVGP). While sparse app