ﻻ يوجد ملخص باللغة العربية
Tracing dust in small dense molecular cores is a powerful tool to study the conditions required for ices to form during the pre-stellar phase. To study these environments, five molecular cores were observed: three with ongoing low-mass star formation (B59, B335, and L483) and two starless collapsing cores (L63 and L694-2). Deep images were taken in the infrared JHK bands with the United Kingdom Infrared Telescope (UKIRT) WFCAM (Wide Field Camera) instrument and IRAC channels 1 and 2 on the Spitzer Space Telescope. These five photometric bands were used to calculate extinction along the line of sight toward background stars. After smoothing the data, we produced high spatial resolution extinction maps ($sim$13-29) . The maps were then projected into the third dimension using the AVIATOR algorithm implementing the inverse Abel transform. The volume densities of the total hydrogen were measured along lines of sight where ices (H$_2$O, CO, and CH$_3$OH) have previously been detected. We find that lines of sight with pure CH$_3$OH or a mixture of CH$_3$OH with CO have maximum volume densities above 1.0$times$10$^5$ cm$^{-3}$. These densities are only reached within a small fraction of each of the cores ($sim$0.3-2.1%). CH$_3$OH presence may indicate the onset of complex organic molecule formation within dense cores and thus we can constrain the region where this onset can begin. The maximum volume densities toward star-forming cores in our sample ($sim$1.2-1.7$times$10$^6$ cm$^{-3}$) are higher than those toward starless cores ($sim$3.5-9.5$times$10$^5$ cm$^{-3}$).
We present maps of the column densities of H$_2$O, CO$_2$, and CO ices towards the molecular cores B~35A, DC~274.2-00.4, BHR~59, and DC~300.7-01.0. These ice maps, probing spatial distances in molecular cores as low as 2200~AU, challenge the traditio
We quantify the spatial distributions of dense cores in three spatially distinct areas of the Orion B star-forming region. For L1622, NGC2068/NGC2071 and NGC2023/NGC2024 we measure the amount of spatial substructure using the $mathcal{Q}$-parameter a
There is currently a severe discrepancy between theoretical models of dust formation in core-collapse supernovae (CCSNe), which predict $gtrsim 0.01$ M$_odot$ of ejecta dust forming within $sim 1000$ days, and observations at these epochs, which infe
We have analyzed HCN(1-0) and CS(2-1) line profiles obtained with high signal-to-noise ratios toward distinct positions in three selected objects in order to search for small-scale structure in molecular cloud cores associated with regions of high-ma
Molecular clouds are a fundamental ingredient of galaxies: they are the channels that transform the diffuse gas into stars. The detailed process of how they do it is not completely understood. We review the current knowledge of molecular clouds and t